Project description:Two basic structures that carry the blaKPC gene, the Tn4401 transposon and the Tn3-Tn4401 chimera, have been identified within and outside China. However, the different blaKPC expression levels and promoter activities of these two structures are not completely understood. We constructed Tn4401a, Tn4401b, and Tn3-Tn4401 chimera recombinants and found that the imipenem (IPM) and meropenem (MEM) MICs for the Escherichia coli transformants carrying the chimera were 2-fold higher than for those carrying Tn4401b but 2-fold lower than for those carrying Tn4401a In addition to the promoter P1, we characterized a novel potential promoter sequence (PX) in the chimera using 5' rapid amplification of cDNA ends (5' RACE), of which the -35 and -10 sequences were TTCAAA and TGAGACAAT, respectively. Although mutation of P1, P2, or PX significantly downregulated blaKPC mRNA expression in each structure (P < 0.05), the P2 mutation resulted in 2- and 3-fold greater decreases than the P1 mutation in Tn4401a and Tn4401b, respectively. Similarly, despite no significant difference in the PX and P1 mutations in the chimera, the carbapenem MIC and Klebsiella pneumoniae carbapenemase (KPC) production resulting from P2 mutations were significantly lower than those of P1 (P < 0.01) in the Tn4401 transposons. These studies indicate that the Tn3-Tn4401 chimera contains a novel potential blaKPC promoter, PX, and that its carbapenem resistance falls in between those of Tn4401a and Tn4401b.
Project description:We report two KPC-producing Citrobacter freundii isolates from unrelated patients. In one case, blaKPC-2 was harbored on a novel variant of a Tn4401 transposon of an IncN plasmid conjugated together with a coresident IncA plasmid, whereas in the other one, blaKPC-3 was on a Tn4401a transposon located on an IncX3-IncA self-conjugative plasmid fusion. The interplay among plasmids carrying blaKPC and the coresident IncA plasmids offers new information on plasmids coresident within clinically relevant enterobacteria.
Project description:Klebsiella pneumoniae carbapenemase (KPC) actively hydrolyzes carbapenems, antibiotics often used a last-line treatment for multidrug-resistant bacteria. KPC clinical relevance resides in its widespread dissemination. In this work, we report the genomic context of KPC coding genes blaKPC-2, blaKPC-3 and blaKPC-30 in multidrug-resistant Klebsiellapneumoniae isolates from Brazil. Plasmids harboring blaKPC-3 and blaKPC-30 were identified. Fifteen additional carbapenem-resistant K. pneumoniae isolates were selected from the same tertiary hospital, collected over a period of 8 years. Their genomes were sequenced in order to evaluate the prevalence and dissemination of blaKPC-harboring plasmids. We found that blaKPC genes were mostly carried by one of two isoforms of transposon Tn4401 (Tn4401a or Tn4401b) that were predominantly located on plasmids highly similar to the previously described plasmid pKPC_FCF3SP (IncN). The identified pKPC_FCF3SP-like plasmids carried either blaKPC-2 or blaKPC-30. Two K. pneumoniae isolates harbored pKpQIL-like (IncFII) plasmids, only recently identified in Brazil; one of them harbored blaKPC-3 in a Tn4401a transposon. Underlining the risk of horizontal spread of KPC coding genes, this study reports the prevalence of blaKPC-2 and the recent spread of blaKPC-3, and blaKPC-30, in association with different isoforms of Tn4401, together with high synteny of plasmid backbones among isolates studied here and in comparison with previous reports.
Project description:The expression of the blaKPC gene plays a key role in carbapenem resistance in Enterobacteriaceae However, the genetic regulators of the blaKPC gene have not been completely elucidated, especially the genes in Tn3-Tn4401 chimeras. Two novel Tn3-Tn4401 chimera isoforms were characterized in our hospital, isoform A (CTA), which harbors a 121-bp deletion containing the PX promoter and was present in 22.6% (54/239) of isolates, and isoform C (CTC), which harbors a 624-bp insertion and a P1 promoter deletion and was present in only 1 isolate. The carbapenem MICs of both isoforms were 2-fold or more higher than those of the wild type (Tn3-Tn4401 chimera, CTB), and blaKPC was most highly expressed in CTA. Bioinformatics and 5' rapid amplification of cDNA ends (5' RACE) experiments indicated a novel strong putative promoter, PY, at the 3' end of the ISKpn8 gene. PY mutation nearly abrogated blaKPC expression (P < 0.01) and restored carbapenem susceptibility in all 3 isoforms. Although the mutation of PX or P1 halved blaKPC expression in CTB (P < 0.05), PX deletion caused a 68% increase in blaKPC expression (P = 0.037) in CTA. The level of blaKPC mRNA in CTC was 8-fold higher than that in InCTC, which harbors P1 (P = 0.011). These results suggest that PY is a core promoter of the blaKPC gene in the chimeras and that the deletion of the PX and P1 promoters enhanced gene expression in CTA and CTC, respectively.
Project description:We describe a novel Tn4401 variant (Tn4401d) in epidemic Klebsiella pneumoniae clone ST258, from which a partial bla(KPC) fragment has been excised along with ISKpn7 and a partial tnpA fragment. Nested-PCR experiments confirmed that this region can be removed from distinct Tn4401 isoforms in both K. pneumoniae and Escherichia coli. This study highlights that the region surrounding bla(KPC) is undergoing recombination and that Tn4401 itself is heterogeneous and highly plastic.
Project description:Colonizations due to carbapenem-resistant Enterobacteriaceae (CRE) are a source of antimicrobial resistance transmission in health care settings. Eleven Citrobacter freundii strains producing KPC-3 carbapenemase were isolated from rectal swabs during a 3-year surveillance program. blaKPC-3-carrying plasmids were found to belong to the IncX3 group in 9 of the 11 strains, and complete nucleotide sequences were obtained for 2 of them. Our results highlight the possible role of C. freundii as reservoir of resistance genes.
Project description:This study reports on the characterization of two ceftazidime-avibactam (CZA)-resistant KPC-producing Klebsiella pneumoniae strains (KP-14159 and KP-8788) sequentially isolated from infections occurred in a patient never treated with CZA. Whole-genome sequencing characterization using a combined short- and long-read sequencing approach showed that both isolates belonged to the same ST258 strain, had altered outer membrane porins (a truncated OmpK35 and an Asp137Thr138 duplication in the L3 loop of OmpK36), and carried novel pKpQIL plasmid derivatives (pIT-14159 and pIT-8788, respectively) harboring two copies of the Tn4401a KPC-3-encoding transposon. Plasmid pIT-8788 was a cointegrate of pIT-14159 with a ColE replicon (that was also present in KP-14159) apparently evolved in vivo during infection. pIT-8788 was maintained at a higher copy number than pIT-14159 and, upon transfer to Escherichia coli DH10B, was able to increase the CZA MIC by 32-fold. The present findings provide novel insights about the mechanisms of acquired resistance to CZA, underscoring the role that the evolution of broadly disseminated pKpQIL plasmid derivatives may have in increasing the blaKPC gene copy number and KPC-3 expression in bacterial hosts. Although not self-transferable, similar elements, with multiple copies of Tn4401 and maintained at a high copy number, could mediate transferable CZA resistance upon mobilization.
Project description:Limited information is available on whether blaKPC-containing plasmids from isolates in a hospital outbreak can be differentiated from epidemiologically unrelated blaKPC-containing plasmids based on sequence data. This study aimed to evaluate the performance of three approaches to distinguish epidemiologically related from unrelated blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids. Epidemiologically related isolates were subjected to short- and long-read whole-genome sequencing. A hybrid assembly was performed, and plasmid sequences were extracted from the assembly graph. Epidemiologically unrelated plasmid sequences were extracted from GenBank. Pairwise comparisons of epidemiologically related and unrelated plasmids based on SNPs using snippy and of phylogenetic distance using Roary and using a similarity index that penalizes size differences between plasmids (Stoesser index) were performed. The percentage of pairwise comparisons misclassified as genetically related or as clonally unrelated was determined using different genetic thresholds for genetic relatedness. The ranges of number of SNPs, Roary phylogenetic distance, and Stoesser index overlapped between the epidemiologically related and unrelated plasmids. When a genetic similarity threshold that classified 100% of epidemiologically related plasmid pairs as genetically related was used, the percentages of plasmids misclassified as epidemiologically related ranged from 6.7% (Roary) to 20.8% (Stoesser index). Although epidemiologically related plasmids can be distinguished from unrelated plasmids based on genetic differences, blaKPC-containing pKpQiL-like IncFII(k2)-IncFIB(pQiL) plasmids show a high degree of sequence similarity. The phylogenetic distance as determined using Roary showed the highest degree of discriminatory power between the epidemiologically related and unrelated plasmids.
Project description:Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae have emerged as major nosocomial pathogens. bla(KPC), commonly located on Tn4401, is found in Gram-negative bacterial strains, with the two most common variants, bla(KPC-2) and bla(KPC-3), identified in plasmids with diverse genetic backgrounds. In this study, we examined bla(KPC-4)- and bla(KPC-5)-bearing plasmids recovered from two K. pneumoniae strains, which were isolated from a single New Jersey hospital in 2005 and 2006, respectively. IncN plasmid pBK31551 is 84 kb in length and harbors bla(KPC-4), bla(TEM-1), qnrB2, aac(3)-Ib, aph(3')-I, qacF, qacE?1, sul1, and dfrA14, which confer resistance to ?-lactams, quinolones, aminoglycosides, quaternary ammonium compounds, and co-trimoxazole. The conserved regions within pBK31551 are similar to those of other IncN plasmids. Surprisingly, analysis of the Tn4401 sequence revealed a large IS110- and Tn6901-carrying element (8.3 kb) inserted into the istA gene, encoding glyoxalase/bleomycin resistance, alcohol dehydrogenase, and S-formylglutathione hydrolase. Plasmid pBK31567 is 47 kb in length and harbors bla(KPC-5), dfrA5, qacE?1, and sul1. pBK31567 belongs to a novel IncX subgroup (IncX5) and possesses a highly syntenic plasmid backbone like other IncX plasmids; however, sequence similarity at the nucleotide level is divergent. The bla(KPC-5) gene is carried on a Tn4401 element and differs from the genetic environment of bla(KPC-5) described in Pseudomonas aeruginosa strain P28 from Puerto Rico. This study underscores the genetic diversity of multidrug-resistant plasmids involved in the spread of bla(KPC) genes and highlights the mobility and plasticity of Tn4401. Comparative genomic analysis provides new insights into the evolution and dissemination of KPC plasmids belonging to different incompatibility groups.
Project description:BackgroundPeripherally inserted central catheters (PICCs) provide reliable intravenous access for delivery of parenteral therapy. Yet, little is known about PICC care practices or how they vary across hospitals. We compared PICC-related processes across hospitals with different insertion delivery models.MethodsWe used a descriptive qualitative methodology and a naturalist philosophy, with site visits to conduct semistructured interviews completed between August 2018 and January 2019. Study sites included five Veterans Affairs Medical Centres, two with vascular access teams (VATs), two with PICC insertion primarily by interventional radiology (IR) and one without on-site PICC insertion capability. Interview participants were healthcare personnel (n=56), including physicians, bedside and vascular access nurses, and IR clinicians. Data collection focused on four PICC domains: use and decision-making process, insertion, in-hospital management and patient discharge education. We used rapid analysis and a summary matrix to compare practices across sites within each domain.ResultsOur findings highlight the benefits of dedicated VATs across all PICC-related process domains, including implementation of criteria to guide PICC placement decisions, timely PICC insertion, more robust management practices and well-defined patient discharge education. We also found areas with potential for improvement, such as clinician awareness of PICC appropriateness criteria and alternative devices, deployment of VATs and patient discharge education.ConclusionVascular access nurses play critical roles in all aspects of PICC-related care. There is variation in PICC decision-making, care and maintenance, and patient education across hospitals. Quality and safety improvement opportunities to reduce this variation are highlighted.