Project description:Community acquired pneumonia (CAP) carries high morbidity, mortality, and economic burden, which is even higher in adults diagnosed with chronic obstructive pulmonary disease (COPD). While several studies have assessed the clinical burden and mortality risk of CAP and COPD, very few studies focus on CAP burden from a COPD patient perspective. Individuals recently diagnosed with CAP and with pre-existing COPD were recruited through the COPD Foundation. The CAP Burden of Illness Questionnaire (CAP-BIQ), a content validated questionnaire assessing CAP symptomatology, duration of symptoms and CAP impact on work, activities and family, was administered at baseline and at 30-days follow-up. Of the 490 participants recruited, 481 had data sufficient for analysis. The prevalence of respiratory-related symptoms was very high (>90%) at the time of diagnosis with other generalized symptoms such as fatigue, trouble sleeping, headaches and confusion present in more than 60% of participants. Mean duration of symptoms varied from approximately 2 weeks for headaches and fever to more than a month for fatigue, wheezing, dyspnea, and cough. Employed participants missed an average of 21 days of work and those not employed missed 36 days of usual activities. Over 84% required help from family, friends or care givers. CAP is a serious and burdensome condition for people with COPD, a condition that can impair activities for weeks, frequently requires care from family or friends, and includes lingering symptoms. The patient-reported impact of CAP reported in this study underscores the need for prevention strategies in this population.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:BackgroundPeople with chronic obstructive pulmonary disease (COPD) are at increased risk of pneumococcal disease, especially pneumonia, as well as acute exacerbations with associated morbidity and healthcare costs.ObjectivesTo determine the efficacy of injectable pneumococcal vaccination for preventing pneumonia in persons with COPD.Search methodsWe searched the Cochrane Airways COPD Trials Register and the databases CENTRAL, MEDLINE and Embase, using prespecified terms. Searches are current to November 2016.Selection criteriaWe included randomised controlled trials (RCT) comparing injectable pneumococcal polysaccharide vaccine (PPV) or pneumococcal conjugated vaccine (PCV) versus a control or alternative vaccine type in people with COPD.Data collection and analysisWe used standard Cochrane methodological procedures. For meta-analyses, we subgrouped studies by vaccine type.Main resultsFor this update, we added five studies (606 participants), meaning that the review now includes a total of 12 RCTs involving 2171 participants with COPD. Average age of participants was 66 years, male participants accounted for 67% and mean forced expiratory volume in one second (FEV1) was 1.2 L (five studies), 54% predicted (four studies). We assessed risks of selection, attrition and reporting bias as low, and risks of performance and detection bias as moderate.Compared with control, the vaccine group had a lower likelihood of developing community-acquired pneumonia (CAP) (odds ratio (OR) 0.62, 95% confidence interval (CI) 0.43 to 0.89; six studies, n = 1372; GRADE: moderate), but findings did not differ specifically for pneumococcal pneumonia (Peto OR 0.26, 95% CI 0.05 to 1.31; three studies, n = 1158; GRADE: low). The number needed to treat for an additional beneficial outcome (NNTB) (preventing one episode of CAP) was 21 (95% CI 15 to 74). Mortality from cardiorespiratory causes did not differ between vaccine and control groups (OR 1.07, 95% CI 0.69 to 1.66; three studies, n = 888; GRADE: moderate), nor did all-cause mortality differ (OR 1.00, 95% CI 0.72 to 1.40; five studies, n = 1053; GRADE: moderate). The likelihood of hospital admission for any cause, or for cardiorespiratory causes, did not differ between vaccine and control groups. Vaccination significantly reduced the likelihood of a COPD exacerbation (OR 0.60, 95% CI 0.39 to 0.93; four studies, n = 446; GRADE: moderate). The NNTB to prevent a patient from experiencing an acute exacerbation was 8 (95% CI 5 to 58). Only one study (n = 181) compared the efficacy of different vaccine types - 23-valent PPV versus 7-valent PCV - and reported no differences for CAP, all-cause mortality, hospital admission or likelihood of a COPD exacerbation, but investigators described a greater likelihood of some mild adverse effects of vaccination with PPV-23.Authors' conclusionsInjectable polyvalent pneumococcal vaccination provides significant protection against community-acquired pneumonia, although no evidence indicates that vaccination reduced the risk of confirmed pneumococcal pneumonia, which was a relatively rare event. Vaccination reduced the likelihood of a COPD exacerbation, and moderate-quality evidence suggests the benefits of pneumococcal vaccination in people with COPD. Evidence was insufficient for comparison of different pneumococcal vaccine types.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:BackgroundDevelopment of adult respiratory disease is influenced by events in childhood. The impact of childhood pneumonia on chronic obstructive pulmonary disease (COPD) is not well defined. We hypothesize that childhood pneumonia is a risk factor for reduced lung function and COPD in adult smokers.MethodsCOPD cases and control smokers between 45-80 years old from the United States COPDGene Study were included. Childhood pneumonia was defined by self-report of pneumonia at <16 years. Subjects with lung disease other than COPD or asthma were excluded. Smokers with and without childhood pneumonia were compared on measures of respiratory disease, lung function, and quantitative analysis of chest CT scans.ResultsOf 10,192 adult smokers, 854 (8.4%) reported pneumonia in childhood. Childhood pneumonia was associated with COPD (OR 1.40; 95% CI 1.17-1.66), chronic bronchitis, increased COPD exacerbations, and lower lung function: post-bronchodilator FEV1 (69.1 vs. 77.1% predicted), FVC (82.7 vs. 87.4% predicted), FEV1/FVC ratio (0.63 vs. 0.67; p < 0.001 for all comparisons). Childhood pneumonia was associated with increased airway wall thickness on CT, without significant difference in emphysema. Having both pneumonia and asthma in childhood further increased the risk of developing COPD (OR 1.85; 95% CI 1.10-3.18).ConclusionsChildren with pneumonia are at increased risk for future smoking-related lung disease including COPD and decreased lung function. This association is supported by airway changes on chest CT scans. Childhood pneumonia may be an important factor in the early origins of COPD, and the combination of pneumonia and asthma in childhood may pose the greatest risk.Clinical trials registrationClinicalTrials.gov, NCT00608764 (Active since January 28, 2008).