Project description:Limited evidence suggests that intraoperative lung-protective ventilation (LPV) during one-lung ventilation (OLV) may reduce respiratory complications after thoracic surgery. Little is known about LPV practices during OLV. Our purpose was to assess the state of practice/perspectives of anesthesiologists regarding LPV during elective OLV.We conducted a multi-institutional cross-sectional survey of anesthesiologists performing OLV at high-volume Canadian tertiary/university centers. The survey was designed, refined and distributed by a multi-disciplinary team using the Dillman method. Univariable and multivariable analyses were used.Seventy-five (63%) of 120 eligible respondents completed the survey. Although the critical care literature focuses on minimizing tidal volume (TV) as the central strategy of LPV, most respondents (89%, n=50/56) focused on minimizing peak airway pressure (PAP) as their primary strategy of intraoperative LPV. Only 64% (n=37/58) reported actively trying to minimize TV. While 32% (n=17/54) were unsure about the current evidence regarding LPV, 67% (n=36/54) believed that the evidence favoured their use during OLV. Perceived clinical and institutional barriers were the only predictors of reduced attempts to minimize TV on univariate analyses. In multivariable/adjusted analyses, perceived institutional barriers were the only predictors of reduced attempts to minimize TV with adjusted odds ratio of 0.1 (95% CI: 0.03-0.6).Most anesthesiologists defined low PAP as the primary strategy of LPV during OLV and attempted to minimize it. This study is the first to assess the practice/perspectives of anesthesiologists regarding LPV during OLV and also the first to explore predictors of LPV use. Randomized trials are currently ongoing. However, this study suggests that institutional barriers may subvert future knowledge translation and need to be addressed.
Project description:BackgroundIn the Protective Ventilation in Cardiac Surgery (PROVECS) randomized, controlled trial, an open-lung ventilation strategy did not improve postoperative respiratory outcomes after on-pump cardiac surgery. In this prespecified subanalysis, the authors aimed to assess the regional distribution of ventilation and plasma biomarkers of lung epithelial and endothelial injury produced by that strategy.MethodsPerioperative open-lung ventilation consisted of recruitment maneuvers, positive end-expiratory pressure (PEEP) = 8 cm H2O, and low-tidal volume ventilation including during cardiopulmonary bypass. Control ventilation strategy was a low-PEEP (2 cm H2O) low-tidal volume approach. Electrical impedance tomography was used serially throughout the perioperative period (n = 56) to compute the dorsal fraction of ventilation (defined as the ratio of dorsal tidal impedance variation to global tidal impedance variation). Lung injury was assessed serially using biomarkers of epithelial (soluble form of the receptor for advanced glycation end-products, sRAGE) and endothelial (angiopoietin-2) lung injury (n = 30).ResultsEighty-six patients (age = 64 ± 12 yr; EuroSCORE II = 1.65 ± 1.57%) undergoing elective on-pump cardiac surgery were studied. Induction of general anesthesia was associated with ventral redistribution of tidal volumes and higher dorsal fraction of ventilation in the open-lung than the control strategy (0.38 ± 0.07 vs. 0.30 ± 0.10; P = 0.004). No effect of the open-lung strategy on the dorsal fraction of ventilation was noted at the end of surgery after median sternotomy closure (open-lung = 0.37 ± 0.09 vs. control = 0.34 ± 0.11; P = 0.743) or in extubated patients at postoperative day 2 (open-lung = 0.63 ± 0.18 vs. control = 0.59 ± 0.11; P > 0.999). Open-lung ventilation was associated with increased intraoperative plasma sRAGE (7,677 ± 3,097 pg/ml vs. 6,125 ± 1,400 pg/ml; P = 0.037) and had no effect on angiopoietin-2 (P > 0.999).ConclusionsIn cardiac surgery patients, open-lung ventilation provided larger dorsal lung ventilation early during surgery without a maintained benefit as compared with controls at the end of surgery and postoperative day 2 and was associated with higher intraoperative plasma concentration of sRAGE suggesting lung overdistension.Editor’s perspective
Project description:Perioperative lung injury is a major source of postoperative morbidity, excess healthcare use, and avoidable mortality. Many potential inciting factors can lead to this condition, including intraoperative ventilator induced lung injury. Questions exist as to whether protective ventilation strategies used in the intensive care unit for patients with acute respiratory distress syndrome are equally beneficial for surgical patients, most of whom do not present with any pre-existing lung pathology. Studied both individually and in combination as a package of intraoperative lung protective ventilation, the use of low tidal volumes, moderate positive end expiratory pressure, and recruitment maneuvers have been shown to improve oxygenation and pulmonary physiology and to reduce postoperative pulmonary complications in at risk patient groups. Further work is needed to define the potential contributions of alternative ventilator strategies, limiting excessive intraoperative oxygen supplementation, use of non-invasive techniques in the postoperative period, and personalized mechanical ventilation. Although the weight of evidence strongly suggests a role for lung protective ventilation in moderate risk patient groups, definitive evidence of its benefit for the general surgical population does not exist. However, given the shift in understanding of what is needed for adequate oxygenation and ventilation under anesthesia, the largely historical arguments against the use of intraoperative lung protective ventilation may soon be outdated, on the basis of its expanding track record of safety and efficacy in multiple settings.
Project description:IntroductionThere is growing interest in the use of low tidal volume ventilation in patients undergoing general anaesthesia. However, its potential benefit has long been debated and conflicting results have been reported. We describe here the protocol of a systematic review and meta-analysis for investigating the beneficial effects of low tidal volume ventilation in patients undergoing general anaesthesia.Methods and analysisData sources include PubMed, Scopus, Embase and EBSCO. Patients undergoing general anaesthesia will be included irrespective of type of surgery. The intervention is low tidal volume ventilation or protective ventilation, and the control is conventional ventilation. The quality of included trials will be assessed by using Delphi consensus. Outcomes include new onset lung injury, atelectasis, arrhythmia, levels of inflammatory biomarkers, arterial oxygenation, partial pressure of carbon dioxide and alveolar-arterial oxygen gradient. Conventional approaches for meta-analysis will be used, and heterogeneity will be investigated by using subgroup analysis and meta-regression if appropriate. The Bayesian method will be used for the synthesis of binary outcome data.Ethics and disseminationThe systematic review was approved by the ethics committee of Jinhua hospital of Zhejiang university and will be published in a peer-reviewed journal and will be disseminated electronically and in print.Registration detailsThe study protocol has been registered in PROSPERO (http://www.crd.york.ac.uk/PROSPERO/) under registration number CRD42013006416.
Project description:Mechanical ventilation can cause acute diaphragm atrophy and injury, and this is associated with poor clinical outcomes. Although the importance and impact of lung-protective ventilation is widely appreciated and well established, the concept of diaphragm-protective ventilation has recently emerged as a potential complementary therapeutic strategy. This Perspective, developed from discussions at a meeting of international experts convened by PLUG (the Pleural Pressure Working Group) of the European Society of Intensive Care Medicine, outlines a conceptual framework for an integrated lung- and diaphragm-protective approach to mechanical ventilation on the basis of growing evidence about mechanisms of injury. We propose targets for diaphragm protection based on respiratory effort and patient-ventilator synchrony. The potential for conflict between diaphragm protection and lung protection under certain conditions is discussed; we emphasize that when conflicts arise, lung protection must be prioritized over diaphragm protection. Monitoring respiratory effort is essential to concomitantly protect both the diaphragm and the lung during mechanical ventilation. To implement lung- and diaphragm-protective ventilation, new approaches to monitoring, to setting the ventilator, and to titrating sedation will be required. Adjunctive interventions, including extracorporeal life support techniques, phrenic nerve stimulation, and clinical decision-support systems, may also play an important role in selected patients in the future. Evaluating the clinical impact of this new paradigm will be challenging, owing to the complexity of the intervention. The concept of lung- and diaphragm-protective ventilation presents a new opportunity to potentially improve clinical outcomes for critically ill patients.
Project description:Mechanical ventilation is associated with the risk of ventilator induced lung injury. For reducing lung injury in mechanically ventilated patients, the application of small tidal volumes and positive end-expiratory pressures has become clinical standard. Recently, an approach based on linear airway pressure decline and decelerated expiratory flow during expiration implied lung protective capacities. We assumed that ventilation with a smoothed, i.e. sinusoidal airway pressure profile may further improve ventilation efficiency and lung protection. We compared the effects of mechanical ventilation with sinusoidal airway pressure profile (SINE) regarding gas exchange, respiratory system compliance and histology to conventional volume and pressure controlled ventilation (VCV and PCV) and to VCV with flow-controlled expiration (FLEX) in two rat models of lung injury, tween induced surfactant depletion and high tidal volume mechanical ventilation. In both lung injury models ventilation with SINE showed more efficient CO2 elimination and blood oxygenation, improved respiratory system compliance and resulted in lower alveolar wall thickness, compared to VCV, PCV and FLEX. Optimization of the airway pressure profile may provide a novel means of lung protective mechanical ventilation.
Project description:The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesity.
Project description:BackgroundOne lung ventilation (OLV) is the technique used during lung resection surgery in order to facilitate optimal surgical conditions. OLV may result in hypoxemia due to the shunt created. Several techniques are used to overcome the hypoxemia, one of which is continuous positive airway pressure (CPAP) to the non-dependent lung. Another technique is ventilating the non-dependent lung with a minimal volume, thus creating differential lung ventilation (DLV). In this study we compared the efficacy of CPAP to DLV during video assisted thoracoscopic lung resection.Patients and methodThis is a prospective study of 30 adult patients undergoing elective video assisted thoracoscopic lung lobectomy. Each patient was ventilated in four modes: two lung ventilation, OLV, OLV + CPAP and OLV + DLV. Fifteen patients were ventilated with CPAP first and DLV next, and the other 15 were ventilated with DLV first and then CPAP. Five minutes separated each mode, during which the non-dependent lung was open to room air. We measured the patient's arterial blood gas during each mode of ventilation. The surgeons, who were blinded to the ventilation technique, were asked to assess the surgical conditions at each stage.ResultsOxygenation during OLV+ CPAP was significantly lower that OLV + DLV (p = 0.018). There were insignificant alterations of pH, PCO2 and HCO3 during the different ventilating modes. The surgeons' assessments of interference in the field exposure between OLV + CPAP or OLV + DLV was found to be insignificant (p = 0.073).ConclusionsDuring OLV, DLV is superior to CPAP in improving patient's oxygenation, and may be used where CPAP failed.Trial registrationClinicalTrials.gov NCT03563612 . Registered 9 June 2018, retrospectively (due to clerical error).
Project description:ObjectivesLower tidal volume ventilation (targeting 3 mL/kg predicted body weight, PBW) facilitated by extracorporeal carbon dioxide removal (ECCO2R) has been investigated as a potential therapy for acute hypoxemic respiratory failure (AHRF) in the pRotective vEntilation with veno-venouS lung assisT in respiratory failure (REST) trial. We investigated the effect of this strategy on cardiac function, and in particular the right ventricle.DesignSubstudy of the REST trial.SettingNine U.K. ICUs.PatientsPatients with AHRF (Pao2/Fio2 < 150 mm Hg [20 kPa]).InterventionTransthoracic echocardiography and N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements were collected at baseline and postrandomization in patients randomized to ECCO2R or usual care.MeasurementsThe primary outcome measures were a difference in tricuspid annular plane systolic excursion (TAPSE) on postrandomization echocardiogram and difference in NT-proBNP postrandomization.ResultsThere were 21 patients included in the echocardiography cohort (ECCO2R, n = 13; usual care, n = 8). Patient characteristics were similar in both groups at baseline. Median (interquartile range) tidal volumes were lower in the ECCO2R group compared with the usual care group postrandomization; 3.6 (3.1-4.2) mL/kg PBW versus 5.2 (4.9-5.7) mL/kg PBW, respectively (p = 0.01). There was no difference in the primary outcome measure of mean (sd) TAPSE in the ECCO2R and usual care groups postrandomization; 21.3 (5.4) mm versus 20.1 (3.2) mm, respectively (p = 0.60). There were 75 patients included in the NT-proBNP cohort (ECCO2R, n = 36; usual care, n = 39). Patient characteristics were similar in both groups at baseline. Median (interquartile range [IQR]) tidal volumes were lower in the ECCO2R group than the usual care group postrandomization; 3.8 (3.3-4.2) mL/kg PBW versus 6.7 (5.8-8.1) mL/kg PBW, respectively (p < 0.0001). There was no difference in median (IQR) NT-proBNP postrandomization; 1121 (241-5370) pg/mL versus 1393 (723-4332) pg/mL in the ECCO2R and usual care groups, respectively (p = 0.30).ConclusionsIn patients with AHRF, a reduction in tidal volume facilitated by ECCO2R, did not modify cardiac function.
Project description:This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.