Project description:A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.
Project description:Mosquito-borne flaviviruses include several important agents of human disease and have provided striking examples of emerging infections. In this study we present the design and validation of a single tube RT-PCR assay using a pair of consensus primers for the detection of mosquito-borne flaviviruses. Sequencing of the amplicons permits the species identification. The assay was validated using RNA from the yellow fever virus vaccine strain and from representative strains of dengue viruses 1, 2, 3 and 4, West Nile virus, Kunjin virus (a clade of West Nile virus), and St. Louis encephalitis virus.
Project description:Technological advances in rare DNA mutations detection have revolutionized the diagnosis and monitoring of tumors, but they are still limited by the lack of supersensitive and high-coverage procedures for identifying low-abundance mutations. Here, we describe a single-tube, multiplex PCR-based system, A-Star, that involves a hyperthermophilic Argonaute from Pyrococcus furiosus (PfAgo) for highly efficient detection of rare mutations beneficial from its compatibility with DNA polymerase. This novel technique uses a specific guide design strategy to allow PfAgo selective cleavage with single-nucleotide resolution at 94°C, thus mostly eliminating wild-type DNA in the denaturation step and efficiently amplifying rare mutant DNA during the PCR process. The integrated single-tube system achieved great efficiency for enriching rare mutations compared with a divided system separating the cleavage and amplification. Thus, A-Star enables easy detection and quantification of 0.01% rare mutations with ≥5500-fold increase in efficiency. The feasibility of A-Star was also demonstrated for detecting oncogenic mutations in solid tumor tissues and blood samples. Remarkably, A-Star achieved simultaneous detection of multiple oncogenes through a simple single-tube reaction by orthogonal guide-directed specific cleavage. This study demonstrates a supersensitive and rapid nucleic acid detection system with promising potential for both research and therapeutic applications.
Project description:Mutations in the Janus kinase 2 (JAK2) gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.
Project description:The IL28B genotype is a critical determinant of interferon response in patients infected with hepatitis C virus genotype 1. We describe an allele-specific PCR assay for the IL28B genotype. The assay is simple and robust, uses commonly available real-time PCR instrumentation, and is well suited for clinical laboratories offering IL28B genotyping.
Project description:Epistatic genetic interactions are key for understanding the genetic contribution to complex traits. Epistasis is always defined with respect to some trait such as growth rate or fitness. Whereas most existing epistasis screens explicitly test for a trait, it is also possible to implicitly test for fitness traits by searching for the over- or under-representation of allele pairs in a given population. Such analysis of imbalanced allele pair frequencies of distant loci has not been exploited yet on a genome-wide scale, mostly due to statistical difficulties such as the multiple testing problem. We propose a new approach called Imbalanced Allele Pair frequencies (ImAP) for inferring epistatic interactions that is exclusively based on DNA sequence information. Our approach is based on genome-wide SNP data sampled from a population with known family structure. We make use of genotype information of parent-child trios and inspect 3×3 contingency tables for detecting pairs of alleles from different genomic positions that are over- or under-represented in the population. We also developed a simulation setup which mimics the pedigree structure by simultaneously assuming independence of the markers. When applied to mouse SNP data, our method detected 168 imbalanced allele pairs, which is substantially more than in simulations assuming no interactions. We could validate a significant number of the interactions with external data, and we found that interacting loci are enriched for genes involved in developmental processes.
Project description:Recurrent mutations in the SLC12A3 gene responsible for autosomal recessive Gitelman syndrome (GS) are frequently reported, but the exact prevalence is unknown. The rapid detection of recurrent SLC12A3 mutations may help in the early diagnosis of GS. This study was aimed to investigate the prevalence of recurrent SLC12A3 mutations in a Taiwan cohort of GS families and develop a simple and rapid method to detect recurrent SLC12A3 mutations. One hundred and thirty independent Taiwan families with genetically confirmed GS were consecutively enrolled to define recurrent SLC12A3 mutations and determine their prevalence. Using TaqMan probe-based real-time polymerase chain reaction, we designed a mutation detection plate with all recurrent mutations. We validated this mutation detection plate and tested its feasibility in newly diagnosed GS patients. A total of 57 mutations in the SLC12A3 gene were identified and 22 including 2 deep intronic mutations were recurrent mutations consisting of 87.1% (242/278, 18 triple) of all allelic mutations. The recurrent mutation-based TaqMan assays were fully validated with excellent sensitivity and specificity in genetically diagnosed GS patients and healthy subjects. In clinical validation, recurrent mutations were recognized in 92.0% of allelic mutations from 12 GS patients within 4 h and all were confirmed by direct sequencing. Recurrent SLC12A3 mutations are very common in Taiwan GS patients and can be rapidly identified by this recurrent mutation-based SLC12A3 mutation plate.
Project description:Detection of low-abundance mutations in cell-free DNA is being used to identify early cancer and early cancer recurrence. Here, we report a new PCR-LDR-qPCR assay capable of detecting point mutations at a single-molecule resolution in the presence of an excess of wild-type DNA. Major features of the assay include selective amplification and detection of mutant DNA employing multiple nested primer-binding regions as well as wild-type sequence blocking oligonucleotides, prevention of carryover contamination, spatial sample dilution, and detection of multiple mutations in the same position. Our method was tested to interrogate the following common cancer somatic mutations: BRAF:c.1799T>A (p.Val600Glu), TP53:c.743G>A (p.Arg248Gln), KRAS:c.35G>C (p.Gly12Ala), KRAS:c.35G>T (p.Gly12Val), KRAS:c.35G>A (p.Gly12Asp), KRAS:c.34G>T (p.Gly12Cys), and KRAS:c.34G>A (p.Gly12Ser). The single-well version of the assay detected 2-5 copies of these mutations, when diluted with 10,000 genome equivalents (GE) of wild-type human genomic DNA (hgDNA) from buffy coat. A 12-well (pixel) version of the assay was capable of single-molecule detection of the aforementioned mutations at TP53, BRAF, and KRAS (specifically p.Gly12Val and p.Gly12Cys), mixed with 1,000-2,250 GE of wild-type hgDNA from plasma or buffy coat. The assay described herein is highly sensitive, specific, and robust, and potentially useful in liquid biopsies.
Project description:BACKGROUND: The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. METHODS: We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3'dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. RESULTS: We showed that the addition of the 3'dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10(-4) per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a commercial assay. CONCLUSIONS: QuanTAS-PCR is a simple, cost-efficient, closed-tube method for JAK2 V617F mutation quantification that can detect very low levels of the mutant allele, thus enabling analysis of minimal residual disease. The approach can be extended to the detection of other recurrent single nucleotide somatic changes in cancer.