Unknown

Dataset Information

0

MiR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a.


ABSTRACT: Hematopoietic stem cells (HSCs) possess the ability to generate all hematopoietic cell types and to self-renew over long periods, but the mechanisms that regulate their unique properties are incompletely understood. Herein, we show that homozygous deletion of the miR-29a/b-1 bicistron results in decreased numbers of hematopoietic stem and progenitor cells (HSPCs), decreased HSC self-renewal, and increased HSC cell cycling and apoptosis. The HSPC phenotype is specifically due to loss of miR-29a, because miR-29b expression is unaltered in miR-29a/b-1-null HSCs, and only ectopic expression of miR-29a restores HSPC function both in vitro and in vivo. HSCs lacking miR-29a/b-1 exhibit widespread transcriptional dysregulation and adopt gene expression patterns similar to normal committed progenitors. A number of predicted miR-29 target genes, including Dnmt3a, are significantly upregulated in miR-29a/b-1-null HSCs. The loss of negative regulation of Dnmt3a by miR-29a is a major contributor to the miR-29a/b-1-null HSPC phenotype, as both in vitro Dnmt3a short hairpin RNA knockdown assays and a genetic haploinsufficiency model of Dnmt3a restored the frequency and long-term reconstitution capacity of HSCs from miR-29a/b-1-deficient mice. Overall, these data demonstrate that miR-29a is critical for maintaining HSC function through its negative regulation of Dnmt3a.

SUBMITTER: Hu W 

PROVIDER: S-EPMC4383797 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2015-03-03 | E-GEOD-58237 | biostudies-arrayexpress
2015-03-03 | GSE58237 | GEO
| S-EPMC5260904 | biostudies-literature
| S-EPMC5551568 | biostudies-literature
| S-EPMC5399551 | biostudies-literature
| S-EPMC4749543 | biostudies-literature
| S-EPMC2916696 | biostudies-literature
| S-EPMC2830094 | biostudies-literature