Project description:Puerarin was a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen). In present study effect of puerarin on cisplatin nephrotoxicity was evaluated. Rat model of nephrotoxicity was established by a single intraperitoneal injection of cisplatin (7mg/kg). Puerarin was administrated through caudal vein injection once per day at the dose of 10mg/kg, 30mg/kg and 50mg/kg. Biochemical assays showed that after cisplatin treatment the serum urea and creatinine increased significantly compared with control (P<0.05). Cisplatin treatment significantly increased xanthine oxidase (XO) activity and malondialdehyde (MDA) formation, and significantly decreased the levels and /or activities of enzymatic and non-enzymatic antioxidants (GSH, GPx, GST, GR, SOD, CAT), in the kidney tissues. Renal levels of TNF-α and IL-6, two important inflammatory cytokines, were also upregulated by cisplatin. Histopathological examination indicated that cisplatin treatment resulted in severe necrosis and degeneration, hyaline casts in the tubules, intertubular hemorrhage, congestion and swelling in glomerulus and leukocytes infiltration in the kidney tissues. Western blot results demonstrated that cisplatin increased TLR4 and NF-κB protein expression in the kidney tissues. However, all these changes induced by cisplatin were significantly attenuated by puerarin treatment in dose-dependent manner, which indicated the renal protective effect of puerarin. Cell culture experiments illustrated that puerarin alone treatment concentration-dependently inhibited COLO205 and HeLa tumor cell growth and dose-dependently promoted the antitumor activity of cisplatin in COLO205 and HeLa tumor cells. The promotion effects might be attributed to suppression of cisplatin-increased NF-κB p65 expression by puerarin. Taken together, findings in this study suggested that puerarin exhibited renal protection against cisplatin nephrotoxicity via inhibiting TLR4/NF-κB signaling, with no inhibition but promotion effect on the antitumor activity of cisplatin. Puerarin might be a promising adjuvant agent for cisplatin chemotherapy.
Project description:Cisplatin is an effective anticancer drug; however, cisplatin use often leads to nephrotoxicity, which limits its clinical effectiveness. In this study, we determined the effect of dichloroacetate, a novel anticancer agent, in a mouse model of cisplatin-induced AKI. Pretreatment with dichloroacetate significantly attenuated the cisplatin-induced increase in BUN and serum creatinine levels, renal tubular apoptosis, and oxidative stress. Additionally, pretreatment with dichloroacetate accelerated tubular regeneration after cisplatin-induced renal damage. Whole transcriptome sequencing revealed that dichloroacetate prevented mitochondrial dysfunction and preserved the energy-generating capacity of the kidneys by preventing the cisplatin-induced downregulation of fatty acid and glucose oxidation, and of genes involved in the Krebs cycle and oxidative phosphorylation. Notably, dichloroacetate did not interfere with the anticancer activity of cisplatin in vivo. These data provide strong evidence that dichloroacetate preserves renal function when used in conjunction with cisplatin.
Project description:Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) are an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy.
Project description:Cisplatin (CDDP) nephrotoxicity is one of the most common side effects in cancer treatment, causing the disruption of chemotherapy. In this study, we analyzed the influence of nongenetic factors on CDDP-induced nephrotoxiciy using the data from 182 CDDP-treated and 52 carboplatin (CBP)-treated patients. The mean change of eGFR (100% to baseline) in CDDP-treated patients was -9.2%, which was significantly lower than that in the population with CBP therapy. By using the chi-squared test and multivariate logistic regression analysis, age (≥50 years) is found associated with CDDP-induced nephrotoxicity, with odds ratio (OR) of 9.167 and 11.771, respectively. Three- and 18-month-old mice were employed to study the age-dependent susceptibility of CDDP-induced nephrotoxicity. Biochemical parameters, histopathogical examination, and mRNA biomarkers indicated that old mice were subjected to more severe kidney injury. In addition, old mice accumulated more CDDP in kidney than young mice, and the protein level of CDDP efflux transporter, MATE1, in aged mice kidney was 35% of that in young mice. Moreover, inflammatory receptor TLR4 was higher in the kidney of old mice, indicating the alteration of inflammatory signaling in old mice. After CDDP administration, the induced alterations of TNF-α, ICAM-1, and TLR4 were more extensive in old mice. To summarize, aging increased the susceptibility of CDDP-induced renal function decline or nephrotoxicity.
Project description:Cisplatin (CP)-induced nephrotoxicity is widely accepted as a model for acute kidney injury (AKI). Although cisplatin-induced chronic kidney disease (CKD) in rodent has been reported, the role of phosphate in the cisplatin-induced CKD progression is not described. In this study, we gave a single peritoneal injection of CP followed by high (2%) phosphate diet for 20 weeks. High dose CP (20 mg/Kg) led to high mortality; whereas a lower dose (10 mg/Kg) resulted in a full spectrum of AKI with tubular necrosis, azotemia, and 0% mortality 7 days after CP injection. After consuming a high phosphate diet, mice developed CKD characterized by low creatinine clearance, interstitial fibrosis, hyperphosphatemia, high plasma PTH and FGF23, low plasma 1,25(OH)2 Vitamin D3 and αKlotho, and classic uremic cardiovasculopathy. The CP model was robust in demonstrating the effect of aging, sexual dimorphism, and dietary phosphate on AKI and also AKI-to-CKD progression. Finally, we used the CP-high phosphate model to examine previously validated methods of genetically manipulated high αKlotho and therapy using exogenous soluble αKlotho protein supplementation. In this CP CKD model, αKlotho mitigated CKD progression, improved mineral homeostasis, and ameliorated cardiovascular disease. Taken together, CP and high phosphate nephrotoxicity is a reproducible and technically very simple model for the study of AKI, AKI-to-CKD progression, extrarenal complications of CKD, and for evaluation of therapeutic efficacy.
Project description:Background and objectiveCisplatin, an effective drug against cancer, commonly induces nephrotoxicity; limiting its therapeutic efficacy and application. In this study, Cisplatin NanoComposite (Cis NC) was formulated successfully from irradiated chitosan coated Cisplatin and MgO nanoparticles (CHIT/Cis/MgO NPs) to promote cisplatin release in a more sustained manner to improve therapeutic efficacy via the reduction of its nephrotoxicity. To compare the relative induced renal toxicity of cisplatin with Cisplatin NanoComposite, histological and biochemical mechanisms underlying nephrotoxicity were investigated.MethodsThirty rats were equally separated to three groups, first group received saline injections and adjusted as the control group, the second group was injected intra-peritoneal with cisplatin 0.64 mg/kg b. wt./day for 6 weeks, the third group was injected intra-peritoneal with Cis NC 5.75 mg/kg b. wt. daily for 6 weeks.ResultsCisplatin-induced renal functional impairment and histopathological damages in the kidney; also, cisplatin disrupted the balance of the redox system in renal tissue, stimulated the inflammatory reactions in the kidney via triggering signal transducer and activator of transcription-1 (STAT1) dependent pathways. Moreover, Cisplatin-induced activation of mammalian target of rapamycin mTOR and inactivation of AMPK/PI3K/Akt signal pathway, and was coupled with induction of p53 activity and the executioner caspase3 to induce apoptotic renal cell death. On the other hand, Cis NC exerted a minimal stimulatory effect on apoptotic and inflammatory signal cascade with negligible renal functional and morphological alterations.ConclusionWe postulated that Cis NC may be a valued possible drug to decrease the cytotoxicity of cisplatin thus reserves the renal function and structure.
Project description:Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Project description:Cisplatin is a commonly used chemotherapeutic agent in the treatment of different types of malignant tumors, but nephrotoxicity limits its usage. Therefore, in this study, we aimed to determine the possible protective effect of Huaiqihuang (HQH) extractum, a kind of Chinese herbal complex that consists of Trametes robiniophila Murr., Lycium barbarum and Polygonatum sibiricum, against nephrotoxicity induced by cisplatin in mice. We found that pretreatment with HQH significantly attenuated the cisplatin-induced increase in blood urea nitrogen (BUN), interstitial congestion, acute renal tubular injury and tubular cell apoptosis and necroptosis. It was further shown that HQH administration reduced cisplatin-induced release and nuclear-cytoplasmic translocation of HMGB1 and inactivated its downstream signaling molecules, TLR4 and NFκB, in renal tubular cells; as a result, HQH repressed cisplatin-induced TNF-α production. As dexamethasone (Dex) exerts renoprotective effects in severe Acute kidney injury (AKI), we compared it with HQH and found that HQH showed similar renoprotective effects to dexamethasone via similar mechanisms. Considering the potential side effects of corticosteroids, reducing the effectiveness of treatment and shortening survival in solid tumor patients, we suggest administration of HQH as a potential adjuvant for cisplatin therapy in solid tumor patients to preserve renal function.
Project description:Cisplatin, which is an inorganic molecule containing a platinum ion, is an antineoplastic agent that has been used to treat various solid tumors. However, its side effects include nephrotoxicity, neurotoxicity, bone marrow toxicity, gastrointestinal toxicity, and ototoxicity, which can limit its use. In this study, nephrotoxicity was caused by the intraperitoneal injection of cisplatin into rats, and then metabolome analysis was performed using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to find plasma metabolite biomarker candidates that would facilitate the early detection of cisplatin-induced nephrotoxicity. As a result, chronological changes were detected in the plasma levels of cysteine-cystine and 3-hydroxy-butyrate in the GC/MS-based metabolomics study. In the LC/MS-based metabolomics study, 3 acylcarnitines and a phosphatidylethanolamine with C18:2-C18:2 were identified as potential plasma biomarkers of cisplatin-induced nephrotoxicity. The plasma levels of these 6 metabolites altered significantly after the administration of cisplatin, and these alterations occurred quicker than the equivalent changes in the plasma levels of creatinine and blood urea nitrogen, which are usually used as indicators of renal dysfunction. These results indicate that the abovementioned metabolites might be reliable biomarkers that would allow the earlier detection of cisplatin-induced nephrotoxicity and that metabolomics is a useful tool for discovering biomarkers that could be used to predict the side effects of cancer therapy.
Project description:We investigated the effects of methanolic leaves extract of Azadirachta indica (MLEN, 500 mg/kg bwt) on cisplatin- (CP-) induced nephrotoxicity and oxidative stress in rats. CP (5 mg/kg bwt) was injected intraperitoneally and MLEN was given by gastric gavage for 5 days before or after CP injection. After 5 days of CP injection, CP-induced injury of the renal tissue was evidenced (i) as histopathological damage of the renal tissue, (ii) as increases in serum uric acid, urea, and creatinine, (iii) as increases in malondialdehyde (MDA) and nitric oxide (NO), (iv) as decreases in the level of glutathione and activities of superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase, and (v) as increase in the expression of nuclear factor kappa B and apoptosis in kidney tissues. However, the oral administration of MLEN to CP-intoxicated rats for 5 days brought back MDA, NO production, and enzymatic and nonenzymatic antioxidants to near normalcy. Moreover, the histological observations evidenced that neem extract effectively rescues the kidney from CP-mediated oxidative damage. Furthermore, PCR results for caspase-3 and caspase-9 and Bax genes showed downregulation in MLEN treated groups. Therefore, Azadirachta indica can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.