Project description:BackgroundCombining radiotherapy (RT) and immunotherapy (IT) may enhance outcomes for metastatic non-small cell lung cancer (mNSCLC). However, data on the immunomodulatory effects of extracranial RT remains limited. This retrospective database analysis examined real-world practice patterns, predictors of survival, and comparative effectiveness of extracranial radioimmunotherapy (RT + IT) versus early-incorporation immunotherapy (eIT) in patients with mNSCLC.MethodsPatients diagnosed with mNSCLC between 2004-2016 treated with eIT or RT + IT were identified in the National Cancer Database. Practice patterns were assessed using Cochrane-Armitrage trend test. Cox proportional hazards and Kaplan-Meier method were used to analyze overall survival (OS). Propensity score matching was performed to account for baseline imbalances. Biologically effective doses (BED) were stratified based on the median (39 Gy10). Stereotactic body radiotherapy (SBRT) was defined as above median BED in ≤5 fractions.ResultseIT utilization increased from 0.3% in 2010 to 13.2% in 2016 (P<0.0001). Rates of RT + eIT increased from 38.8% in 2010 to 49.1% in 2016 among those who received eIT (P<0.0001). Compared to eIT alone, RT + eIT demonstrated worse median OS (11.2 vs. 13.2 months) while SBRT + eIT demonstrated improved median OS (25 vs. 13.2 months) (P<0.0001). There were no significant differences in OS based on sequencing of eIT relative to RT (log-rank P=0.4415) or irradiated site (log-rank P=0.1606). On multivariate analysis, factors associated with improved OS included chemotherapy (HR 0.86, P=0.0058), treatment at academic facilities (HR 0.83, P<0.0001), and SBRT (HR 0.60, P=0.0009); after propensity-score multivariate analysis, SBRT alone showed improved OS (HR 0.28, P<0.0001).ConclusionsUtilization of RT + eIT in mNSCLC is increasing. SBRT + eIT was associated with improved OS on propensity-score matched analysis. There were no significant differences in OS based on RT + eIT sequencing or site irradiated. Whether these observations reflect patient selection or possible immunomodulatory benefits of RT is unclear and warrants further study.
Project description:Personalized, ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is designed to administer tumoricidal doses in a pulsed mode with extended intervals, spanning weeks or months. This approach leverages longer intervals to adapt the treatment plan based on tumor changes and enhance immune-modulated effects. In this investigation, we seek to elucidate the potential synergy between combined PULSAR and PD-L1 blockade immunotherapy using experimental data from a Lewis Lung Carcinoma (LLC) syngeneic murine cancer model. Employing a long short-term memory (LSTM) recurrent neural network (RNN) model, we simulated the treatment response by treating irradiation and anti-PD-L1 as external stimuli occurring in a temporal sequence. Our findings demonstrate that: (1) The model can simulate tumor growth by integrating various parameters such as timing and dose, and (2) The model provides mechanistic interpretations of a "causal relationship" in combined treatment, offering a completely novel perspective. The model can be utilized for in-silico modeling, facilitating exploration of innovative treatment combinations to optimize therapeutic outcomes. Advanced modeling techniques, coupled with additional efforts in biomarker identification, may deepen our understanding of the biological mechanisms underlying the combined treatment.
Project description:The emergence of immune checkpoint inhibitors (ICIs) as a pillar of cancer treatment has emphasized the immune system's integral role in tumor control and progression through cancer immune surveillance. ICIs are being investigated and incorporated into the treatment paradigm for lung cancers across stages and histology. To date, definitive concurrent chemoradiotherapy followed by consolidative durvalumab is the only National Comprehensive Cancer Network's recommended treatment paradigm including radiotherapy with ICI in lung cancers, although there are other recommendations for ICI with chemotherapy and/or surgery. This narrative review provides an overall view of the evolving integration and synergistic role of immunotherapy and radiotherapy and outlines the use of immunotherapy with radiotherapy for the management of small cell lung cancer and non-small cell lung cancer. It also reviews selected, practice-changing clinical trials that led to the current standard of care for lung cancers.
Project description:The clinical success of immune checkpoint inhibitors in treating metastatic and refractory cancers has generated significant interest in investigating their role in treating locally advanced diseases, thus requiring them to be combined with standard treatments in the hope of producing synergistic antitumor responses. Radiotherapy, in particular, has long been hypothesized to have actions complementary to those of immune checkpoint blockade, and a growing body of evidence indicates that cancer immunotherapy may also have radiosensitizing effects, which would provide unique benefit for locoregional treatments. Recent studies have demonstrated that when immune cells are activated by immunotherapeutics, they can reprogram the tumor microenvironment in ways that may potentially increase the radiosensitivity of the tumor. In this review, we highlight the evidence that supports reciprocal interactions between cancer immunotherapy and radiotherapy, where in addition to the traditional notion that radiation serves to enhance the activation of antitumor immunity, an alternative scenario also exists in which T-cell activation by cancer immunotherapy may sensitize tumors to radiation treatment through mechanisms that include normalization of the tumor vasculature and tissue hypoxia. We describe the empirical observations from preclinical models that support such effects and discuss their implications for future research and trial design.
Project description:Immunotherapy has become standard of care in advanced non-small cell lung cancer (NSCLC) in a number of settings. Radiotherapy remains an important and potentially curative treatment for localized and locally advanced NSCLC not amenable to surgery. While the principal cytotoxic effect of ionizing radiation is via DNA damage, the effect on tumour microenvironment, promoting dendritic cell presentation of tumour-derived antigens to T cells stimulating the host adaptive immune system to mount an immune response against tumours cells, has become of particular interest when combining immunomodulating agents with radiation. The 'abscopal effect' of radiation where non-irradiated metastatic lesions may respond to radiation may be immune-mediated, via radiation primed anti-tumour T cells. Immune priming by radiation offers the potential for increasing the efficacy of immunotherapy and this is subject to on-going clinical trials underpinned by immunological bioassays. Increasing understanding of the interaction between tumour, radiation and immune cells at a molecular level provides a further opportunity for intervention to enhance the potential synergy between radiation and immunotherapy. Applying the potential efficacy of combination therapy to clinical practice requires caution particularly to ensure the safety of the two treatment modalities in early phase clinical trials, many of which are currently underway. We review the biological basis for combining radiation and immunotherapy and examine the existing pre-clinical and clinical evidence and the challenges posed by the new combination of treatments.
Project description:Angiogenesis and inflammation are crucial processes through which the tumor microenvironment (TME) influences tumor progression. In this study, we showed that peroxisome proliferator-activated receptor γ (PPARγ) is not only expressed in CT26 and 4T1 tumor cell lines but also in cells of TME, including endothelial cells and tumor-associated macrophages (TAM). In addition, we showed that rosiglitazone may induce tumor vessel normalization and reduce TAM infiltration. Additionally, 4T1 and CT26 tumor-bearing mice treated with rosiglitazone in combination with radiotherapy showed a significant reduction in lesion size and lung metastasis. We reported that a single dose of 12 Gy irradiation strongly inhibits local tumor angiogenesis. Secretion of C-C motif chemokine ligand 2 (CCL2) in response to local irradiation facilitates the recruitment of migrating CD11b+ myeloid monocytes and TAM to irradiated sites that initiate vasculogenesis and enable tumor recurrence after radiotherapy. We found that rosiglitazone partially decreases CCL2 secretion by tumor cells and reduces the infiltration of CD11b+ myeloid monocytes and TAM to irradiated tumors, thereby delaying tumor regrowth after radiotherapy. Therefore, combination of the PPARγ agonist rosiglitazone with radiotherapy enhances the effectiveness of radiotherapy to improve local tumor control, decrease distant metastasis risks and delay tumor recurrence.
Project description:Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.
Project description:Immunotherapy serves as another effective cancer treatment apart from surgery, chemoradiotherapy, and targeted drug therapy. Radiotherapy combined with immunotherapy has significantly improved the effective cure rate for patients in several clinical trials. It subverted the traditional view that radiotherapy kills immune cells and has immunosuppressive effects, indicating a synergistic effect of radiotherapy and immunotherapy. In this article, we reviewed and summarized the molecular mechanism of the combined use of radiotherapy and immunotherapy, as well as the clinical treatment and safety of the combination of the two. We describe the rationale for the integration of radiotherapy and immunotherapy in patients with cervical cancer, present safety and efficacy data that support this combination strategy, and highlight unanswered question sand future research needs. Besides, this study can be referenced for clinicians to guide subsequent clinical medicine.
Project description:Head and neck squamous cell carcinoma (HNSCC) is a leading cause of morbidity and mortality globally. Despite significant advances in well-established treatment techniques, prognosis for advanced-stage HNSCC remains poor. Recent, accumulating evidence supports a role for immunotherapy in HNSCC treatment. Radiation therapy (RT), a standard treatment option for HNSCC, has immunomodulatory and immunostimulatory effects that may enhance the efficacy of immunotherapy. In several cancer types, combining RT and immunotherapy has been shown to improve tumor response rates, increase survival, and reduce toxicity compared to traditional chemotherapy and radiation therapy. This review provides a timely overview of the current knowledge on the use of RT and immunotherapy for treating HNSCC. It highlights the potential advantages of combining these therapies, such as improved tumor response rates, increased survival, and reduced toxicity. The review also discusses the challenges that need to be addressed when redefining the standard of care in HNSCC, and proposes further research to optimize treatment combinations, minimize radiation-induced toxicity, and identify suitable patient populations for treatment.
Project description:Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the "radscopal effect" which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.