Unknown

Dataset Information

0

Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate.


ABSTRACT: HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial-mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis.

SUBMITTER: Di-Cicco A 

PROVIDER: S-EPMC4498445 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate.

Di-Cicco Amandine A   Petit Valérie V   Chiche Aurélie A   Bresson Laura L   Romagnoli Mathilde M   Orian-Rousseau Véronique V   Vivanco Maria dM Md   Medina Daniel D   Faraldo Marisa M MM   Glukhova Marina A MA   Deugnier Marie-Ange MA  

eLife 20150713


HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persist  ...[more]

Similar Datasets

| S-EPMC3401379 | biostudies-literature
| S-EPMC4331521 | biostudies-literature
| S-EPMC5768988 | biostudies-literature
| S-EPMC6346556 | biostudies-literature
| S-EPMC4157827 | biostudies-literature
| S-EPMC2646406 | biostudies-literature