Unknown

Dataset Information

0

Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results.


ABSTRACT: Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ? 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

SUBMITTER: Cerasa A 

PROVIDER: S-EPMC4663371 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results.

Cerasa Antonio A   Castiglioni Isabella I   Salvatore Christian C   Funaro Angela A   Martino Iolanda I   Alfano Stefania S   Donzuso Giulia G   Perrotta Paolo P   Gioia Maria Cecilia MC   Gilardi Maria Carla MC   Quattrone Aldo A  

Behavioural neurology 20151118


Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bu  ...[more]

Similar Datasets

| S-EPMC4097812 | biostudies-other
| S-EPMC8597096 | biostudies-literature
| S-EPMC5310935 | biostudies-literature
| S-EPMC5265810 | biostudies-other
| S-EPMC10947459 | biostudies-literature
| S-EPMC1534064 | biostudies-literature
| S-EPMC4814515 | biostudies-literature
| S-EPMC8470254 | biostudies-literature
| S-EPMC4057401 | biostudies-literature
| S-EPMC6262410 | biostudies-other