Project description:The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells.
Project description:Aberrant expression of 1 or more transcription factor oncogenes is a critical component of the molecular pathogenesis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional programs downstream of T-ALL oncogenes are mostly unknown. TAL1/SCL is a basic helix-loop-helix (bHLH) transcription factor oncogene aberrantly expressed in 60% of human T-ALLs. We used chromatin immunoprecipitation (ChIP) on chip to identify 71 direct transcriptional targets of TAL1/SCL. Promoters occupied by TAL1 were also frequently bound by the class I bHLH proteins E2A and HEB, suggesting that TAL1/E2A as well as TAL1/HEB heterodimers play a role in transformation of T-cell precursors. Using RNA interference, we demonstrated that TAL1 is required for the maintenance of the leukemic phenotype in Jurkat cells and showed that TAL1 binding can be associated with either repression or activation of genes whose promoters occupied by TAL1, E2A, and HEB. In addition, oligonucleotide microarray analysis of RNA from 47 primary T-ALL samples showed specific expression signatures involving TAL1 targets in TAL1-expressing compared with -nonexpressing human T-ALLs. Our results indicate that TAL1 may act as a bifunctional transcriptional regulator (activator and repressor) at the top of a complex regulatory network that disrupts normal T-cell homeostasis and contributes to leukemogenesis.
Project description:The oncogenic transcription factor TAL1 regulates the transcriptional program in T-ALL. ARID5B is one of the critical downstream targets of TAL1, which further activates the oncogenic regulatory circuit in T-ALL cells. Here, we elucidated the molecular functions of the noncoding RNA, ARID5B-inducing enhancer associated long noncoding RNA (ARIEL), in T-ALL pathogenesis. We demonstrated that ARIEL is specifically activated in TAL1 + T-ALL cases, and its expression is associated with ARID5B enhancer activity. ARIEL recruits mediator proteins to the ARID5B enhancer, promotes enhancer-promoter interactions, and activates the expression of ARID5B, thereby positively regulating the TAL1-induced transcriptional program and the MYC oncogene. The TAL1 complex coordinately regulates the expression of ARIEL Knockdown of ARIEL inhibits cell growth and survival of T-ALL cells in culture and blocks disease progression in a murine xenograft model. Our results indicate that ARIEL plays an oncogenic role as an enhancer RNA in T-ALL.
Project description:TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 and its regulatory partners (GATA3, RUNX1, and MYB) positively regulate each other and coordinately regulate the expression of their downstream target genes in T-ALL cells. However, long non-coding RNAs (lncRNAs) regulated by these factors are largely unknown. Here we established a bioinformatics pipeline and analyzed RNA-seq datasets with deep coverage to identify lncRNAs regulated by TAL1 in T-ALL cells. Our analysis predicted 57 putative lncRNAs that are activated by TAL1. Many of these transcripts were regulated by GATA3, RUNX1, and MYB in a coordinated manner. We identified two novel transcripts that were activated in multiple T-ALL cell samples but were downregulated in normal thymocytes. One transcript near the ARID5B gene locus was specifically expressed in TAL1-positive T-ALL cases. The other transcript located between the FAM49A and MYCN gene locus was also expressed in normal hematopoietic stem cells and T-cell progenitor cells. In addition, we identified a subset of lncRNAs that were negatively regulated by TAL1 and positively regulated by E-proteins in T-ALL cells. This included a known lncRNA (lnc-OAZ3-2:7) located near the RORC gene, which was expressed in normal thymocytes but repressed in TAL1-positive T-ALL cells.
Project description:The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases.
Project description:The cellular context that integrates gene expression, signaling, and metabolism dictates the oncogenic behavior and shapes the treatment responses in distinct cancer types. Although chimeric fusion proteins involving transcription factors (TF) are hallmarks of many types of acute lymphoblastic leukemia (ALL), therapeutically targeting the fusion proteins is a challenge. In this work, we characterize the core regulatory circuitry (CRC; interconnected autoregulatory loops of TFs) of B-ALL involving MEF2D-fusions and identify MEF2D-fusion and SREBF1 TFs as crucial CRC components. By gene silencing and pharmacologic perturbation, we reveal that the CRC integrates the pre-B-cell receptor (BCR) and lipid metabolism to maintain itself and govern malignant phenotypes. Small-molecule inhibitors of pre-BCR signaling and lipid biosynthesis disrupt the CRC and silence the MEF2D fusion in cell culture and show therapeutic efficacy in xenografted mice. Therefore, pharmacologic disruption of CRC presents a potential therapeutic strategy to target fusion protein-driven leukemia.SignificanceCancer type-specific gene expression is governed by transcription factors involved in a highly interconnected autoregulatory loop called CRC. Here, we characterized fusion protein-driven CRC and identified its pharmacologic vulnerabilities, opening therapeutic avenues to indirectly target fusion-driven leukemia by disrupting its CRC.See related commentary by Sadras and Müschen, p. 18. This article is highlighted in the In This Issue feature, p. 5.
Project description:Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.
Project description:The oncogenic transcription factor TAL1/SCL is aberrantly overexpressed in over 40% of cases of T-cell acute lymphoblastic leukemia (T-ALL), emphasizing the importance of the TAL1-regulated transcriptional program in the molecular pathogenesis of T-ALL. Here we identify regions occupied by TAL1 and its regulatory partners HEB, E2A, and GATA3 in a T-ALL cell line (RPMI-8402). Human T-ALL cells were cross-linked with formaldehyde for 20 min. DNA was enriched by chromatin immunoprecipitation (ChIP) and analyzed by Solexa sequencing. A sample of whole cell extract (WCE) was sequenced and used as the background to determine enrichment. ChIP was performed using an antibody against total TAL1 (Santa Cruz SC-12984), TCF12/HEB (Santa Cruz SC-357),TCF3/E2A (Santa Cruz SC-349X), and GATA3 (Santa Cruz SC-22206).
Project description:The oncogenic transcription factor TAL1/SCL is aberrantly overexpressed in over 40% of cases of T-cell acute lymphoblastic leukemia (T-ALL), emphasizing the importance of the TAL1-regulated transcriptional program in the molecular pathogenesis of T-ALL. Here we identify regions occupied by TAL1 and its regulatory partners HEB, E2A, and GATA3 in a T-ALL cell line (RPMI-8402).