Ontology highlight
ABSTRACT: Background
Biodegradable microspheres fabricated from poly (Lactic-co-glycolic acid) (PLGA) have attracted considerable attention in the bone tissue regeneration field. In this study, rabbit mesenchymal stem cells (rMSCs) adherent to PLGA microspheres were implanted into athymic nude mice and irradiated with 647 nm red light to promote bone formation. It was found that irradiating rMSCs with high levels of red light (647 nm) from an LED (light-emitting diode) increased levels of bone specific markers in rMSCs embedded on PLGA microspheres.Result
These increased expressions were observed by RT-PCR, real time-QPCR, immunohistochemistry (IHC), and von Kossa and Alizarin red S staining. Microsphere matrices coated with rMSCs were injected into athymic nude mice and irradiated with red light for 60 seconds showed significantly greater bone-specific phenotypes after 4 weeks in vivo.Conclusion
The devised PLGA microsphere matrix containing rMSCs and irradiation with red light at 647 nm process shows promise as a means of coating implantable biomedical devices to improve their biocompatibilities and in vivo performances.
SUBMITTER: Park JS
PROVIDER: S-EPMC4758155 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
Park Ji Sun JS Park Keun-Hong KH
Biomaterials research 20160218
<h4>Background</h4>Biodegradable microspheres fabricated from poly (Lactic-co-glycolic acid) (PLGA) have attracted considerable attention in the bone tissue regeneration field. In this study, rabbit mesenchymal stem cells (rMSCs) adherent to PLGA microspheres were implanted into athymic nude mice and irradiated with 647 nm red light to promote bone formation. It was found that irradiating rMSCs with high levels of red light (647 nm) from an LED (light-emitting diode) increased levels of bone spe ...[more]