Correction: Involvement of Protein Tyrosine Phosphatases BcPtpA and BcPtpB in Regulation of Vegetative Development, Virulence and Multi-Stress Tolerance in Botrytis cinerea.
Correction: Involvement of Protein Tyrosine Phosphatases BcPtpA and BcPtpB in Regulation of Vegetative Development, Virulence and Multi-Stress Tolerance in Botrytis cinerea.
Project description:Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.
Project description:The Str2 gene encodes a cystathionine γ-synthase that is a key enzyme in methionine (Met) biosynthesis in Saccharomyces cerevisiae. Met plays a critical role in protein synthesis and diverse cellular processes in both eukaryotes and prokaryotes. In this study, we characterized the Str2 orthologue gene BcStr2 in Botrytis cinerea. The BcStr2 mutant was unable to grow on minimal medium (MM). In addition, conidia of the mutant were unable to germinate in water-agar medium within 15 h of incubation. Supplementation with 1 mm Met or 0.5 mg/mL homocysteine, but not 1 mm cysteine or 0.5 mg/mL glutathione, rescued the defect in mycelial growth of the BcStr2 deletion mutant. These results indicate that the enzyme encoded by BcStr2 is involved in the conversion of cysteine into homocysteine. The mutant exhibited decreased conidiation and impaired sclerotium development. In addition, the BcStr2 mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents and thermal stress. The mutant demonstrated dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutant with wild-type BcStr2. Taken together, the results of this study indicate that BcStr2 plays a critical role in the regulation of various cellular processes in B. cinerea.
Project description:In Saccharomyces cerevisiae, the Mtg2 gene encodes the Obg protein, which has an important function in assembling ribosomal subunits. However, little is known about the role of the Obg GTPase in filamentous fungi. In this study, we identified an Mtg2 ortholog, BcMtg2, in B. cinerea. The BcMtg2 deletion mutant showed a defect in spore production, conidial germination and sclerotial formation. Additionally, the mutant increased sensitivity to various environmental stresses. The BcMtg2 mutant exhibited dramatically decreased virulence on host plant tissues. BcMtg2 mutant showed increased sensitivity to osmotic and oxidative stresses, and to Congo red (cell wall stress agent). In the yeast complement assay, growth defects of yeast BY4741ΔMTG2 mutant were partly restored by genetic complementation of BcMtg2 under these environmental stresses. Additionally, compared with the parental strain and complement strain, the BcMtg2 deletion mutant displayed a minor glycerol response to osmosis stress. These defective phenotypes were recovered in the complement strain ΔBcMtg2C, which was created by adding the wild-type BcMtg2 gene to the ΔBcMtg2 mutant. The results of this study indicate that BcMtg2 has a necessary role in asexual development, environmental stress response and pathogenicity in B. cinerea.
Project description:The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis and formation of modified wobble uridines in tRNA. In this study, we investigated the function of BcElp4 in Botrytis cinerea, which is homologous to S. cerevisiae Elp4. A bcelp4 deletion mutant was significantly impaired in vegetative growth, sclerotia formation and melanin biosynthesis. This mutant exhibited decreased sensitivity to osmotic and oxidative stresses as well as cell way-damaging agent. Pathogenicity assays revealed that BcElp4 is involved in the virulence of B. cinerea. In addition, the deletion of bcelp4 led to increased aerial mycelia development. All these defects were restored by genetic complementation of the bcelp4 deletion mutant with the wild-type bcelp4 gene. The results of this study indicated that BcElp4 is involved in regulation of vegetative development, various environmental stress response and virulence in B. cinerea.
Project description:Botrytis cinerea is a pathogenic fungus that causes gray mold disease in a broad range of crops. The high intraspecific variability of B. cinerea makes control of this fungus very difficult. Here, we isolated a variant B05.10M strain from wild-type B05.10. The B05.10M strain showed serious defects in mycelial growth, spore and sclerotia production, and virulence. Using whole-genome resequencing and site-directed mutagenesis, a single nucleotide mutation in the adenylate cyclase (BAC) gene that results in an amino acid residue (from serine to proline, S1407P) was shown to be the cause of various defects in the B05.10M strain. When we further investigated the effect of S1407 on BAC function, the S1407P mutation in bac showed decreased accumulation of intracellular cyclic AMP (cAMP), and the growth defect could be partially restored by exogenous cAMP, indicating that the S1407P mutation reduced the enzyme activity of BAC. Moreover, the S1407P mutation exhibited decreased spore germination rate and infection cushion formation, and increased sensitivity to cell wall stress, which closely related to fungal development and virulence. Taken together, our study indicates that the S1407 site of bac plays an important role in vegetative growth, sclerotial formation, conidiation and virulence in B. cinerea.
Project description:Yak1, a member of the dual-specificity tyrosine phosphorylation-regulated protein kinases, plays an important role in diverse cellular processes in fungi. However, to date, the role of BcYak1 in Botrytis cinerea, the causal agent of gray mold diseases in various plant species, remains uncharacterized. Our previous study identified one lysine acetylation site (Lys252) in BcYak1, which is the first report of such a site in Yak1. In this study, the function of BcYak1 and its lysine acetylation site were investigated using gene disruption and site-directed mutagenesis. The gene deletion mutant ΔBcYak1 not only exhibits much lower pathogenicity, conidiation and sclerotium formation, but was also much more sensitive to H2O2 and the ergosterol biosynthesis inhibitor (EBI) triadimefon. The Lys252 site-directed mutagenesis mutant strain ΔBcYak1-K252Q (mimicking the acetylation of the site), however, only showed lower sclerotium formation and higher sensitivity to H2O2. These results indicate that BcYAK1 is involved in the vegetative differentiation, adaptation to oxidative stress and triadimefon, and virulence of B. cinerea.
Project description:Small GTPases of the Ras superfamily are highly conserved proteins that are involved in various cellular processes, in particular morphogenesis, differentiation, and polar growth. Here we report on the analysis of RAS1 and RAC homologues from the gray mold fungus Botrytis cinerea. We show that these small GTPases are individually necessary for polar growth, reproduction, and pathogenicity, required for cell cycle progression through mitosis (BcRAC), and may lie upstream of the stress-related mitogen-activated protein kinase (MAPK) signaling pathway. bcras1 and bcrac deletion strains had reduced growth rates, and their hyphae were hyperbranched and deformed. In addition, both strains were vegetatively sterile and nonpathogenic. A strain expressing a constitutively active (CA) allele of the BcRAC protein had partially similar but milder phenotypes. Similar to the deletion strains, the CA-BcRAC strain did not produce any conidia and had swollen hyphae. In contrast to the two deletion strains, however, the growth rate of the CA-BcRAC strain was normal, and it caused delayed but well-developed disease symptoms. Microscopic examination revealed an increased number of nuclei and disturbance of actin localization in the CA-BcRAC strain. Further work with cell cycle- and RAC-specific inhibitory compounds associated the BcRAC protein with progression of the cell cycle through mitosis, possibly via an effect on microtubules. Together, these results show that the multinucleate phenotype of the CA-BcRAC strain could result from at least two defects: disruption of polar growth through disturbed actin localization and uncontrolled nuclear division due to constitutive activity of BcRAC.
Project description:Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.
Project description:Botrytis cinerea is a necrotrophic model fungal plant pathogen that causes grey mould, a devastating disease responsible for large losses in the agriculture sector. As important targets of fungicides, membrane proteins are hot spots in the research and development of fungicide products. We previously found that membrane protein Bcest may be closely related to the pathogenicity of Botrytis cinerea. Herein, we further explored its function. We generated and characterised ΔBcest deletion mutants of B. cinerea and constructed complemented strains. The ΔBcest deletion mutants exhibited reduced conidia germination and germ tube elongation. The functional activity of ΔBcest deletion mutants was investigated by reduced necrotic colonisation of B. cinerea on grapevine fruits and leaves. Targeted deletion of Bcest also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted-gene complementation. The role of Bcest in pathogenicity was also supported by reverse-transcriptase real-time quantitative PCR results indicating that melanin synthesis gene Bcpks13 and virulence factor Bccdc14 were significantly downregulated in the early infection stage of the ΔBcest strain. Taken together, these results suggest that Bcest plays important roles in the regulation of various cellular processes in B. cinerea.
Project description:Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8, a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (ΔBcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the ΔBcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinereaIMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea.