Project description:Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Project description:Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's congenital amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI (fMRI) was used to assess retinal signal transmission in cortical and subcortical visual structures before and 1 year after retinal intervention. The fMRI paradigm consisted of 15-s blocks of flickering (8 Hz) black and white checkerboards interleaved with 15 s of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway. Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some re-engagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the retinotectal pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.
Project description:Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Project description:BackgroundRetinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs.MethodsPubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed.ResultsOverall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05).ConclusionThe findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Project description:Since long before the first approval of gene therapy for retinal disease, ocular gene therapy has captured the hopes of patients, clinicians, and scientists alike. Indeed, the retina provides a unique system for studying and treating ocular diseases, and it holds the distinction as the first tissue targeted by an approved gene therapy for inherited disorders in the United States. There are many methods for addressing genetic diseases in the eyes using a wide range of potential delivery systems and vectors. However, despite the immense progress over the last several decades, both old and new challenges remain, such as the long-term effects of treatments, immunogenicity, targeting, and manufacturing. This review provides a discussion of the history of ocular gene therapy, the various gene therapy approaches, methods to deliver a gene directly to ocular tissues (including both routes of administration and vectors), challenges to ocular gene therapy, the current clinical trial landscape, and future directions of the field.
Project description:Synaptic disorganization is a prominent feature of many neurological diseases of the CNS, including Parkinson's disease, intellectual development disorders, and autism. Although synaptic plasticity is critical for learning and memory, it is unclear whether this innate property helps restore synaptic function in disease once the primary cause of disease is abrogated. An answer to this question may come from a recent investigation in X-linked retinoschisis, a currently untreatable retinopathy. In this issue of the JCI, Ou, Vijayasarathy, and colleagues showed progressive disorganization of key functional elements of the synapse between photoreceptors and ON-bipolar cells in a retinoschisin-deficient mouse model. Moreover, they demonstrated that adeno-associated virus-mediated (AAV-mediated) delivery of the retinoschisin gene restores structure and function to the photoreceptor to ON-bipolar cell synapse in mouse models, even in adults at advanced stages of the disease. The results of this study hold promise that AAV-based supplemental gene therapy will benefit patients with X-linked retinoschisis in a forthcoming clinical trial.
Project description:BackgroundRetinitis pigmentosa (RP) is an inherited retinal disease characterized by progressive loss of photoreceptor cells. This study aim at exploring the effect of retinal pigment epithelium (RPE) derived from human-induced pluripotent stem cell (hiPSC-RPE) on the retina of retinal degeneration 10 (rd10) mice, which are characterized with progressive photoreceptor death.MethodsWe generated RPE from hiPSCs by sequential supplementation with retinal-inducing factors and RPE specification signaling factors. The three-dimensional (3D) spheroid culture method was used to obtain optimal injectable hiPSC-RPE cells. Subretinal space transplantation was conducted to deliver hiPSC-RPE cells into the retina of rd10 mice. Neurotrophic factor secretion from transplanted hiPSC-RPE cells was detected by enzyme-linked immunosorbent assay (ELISA). Immunostaining, Western blotting, electroretinography (ERG), and visual behavior testing were performed to determine the effects of hiPSC-RPE on the retinal visual function in rd10 mice.ResultsOur data demonstrated that hiPSC-RPE cells exhibited classic RPE properties and phenotype after the sequential RPE induction from hiPSCs. hiPSC-RPE cells co-cultured with mouse retinal explants or retinal ganglion cells 5 (RGC5) exhibited decreased apoptosis. The viability and functional properties of hiPSC-RPE cells were enhanced by 3D spheroid culture. Transplanted hiPSC-derived RPE cells were identified by immunostaining with human nuclear antigen staining in the retina of rd10 14 days after subretinal space injection. The pigment epithelium-derived factor level was increased significantly. The expression of CD68, microglial activation marker, reduced after transplantation. The light avoidance behavior and ERG visual function in rd10 mice improved by the transplantation of hiPSC-RPE cells.ConclusionOur findings suggest that injectable hiPSC-RPE cells after 3D spheroid culture can rescue the structure and function of photoreceptors by sub-retinal transplantation, which lay the foundation for future clinical cell therapy to treat RP and other retinal degeneration diseases.
Project description:As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.
Project description:Various advances have been made in the treatment of retinal diseases, including new treatment strategies and innovations in surgical devices. However, the treatment of degenerative retinal diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), continues to pose a significant challenge. In this review, we focus on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to treat retinal diseases by harnessing the ability of stem cells to differentiate into different body tissues. The retina is a tissue specialized for light sensing, and its degradation leads to vision loss. As part of the central nervous system, the retina has very low regenerative capability, and therefore, treatment options are limited once it degenerates. Nevertheless, innovations in methods to induce the generation of retinal cells and tissues from ESCs/iPSCs enable the development of novel approaches for these irreversible diseases. Here we review some historical background and current clinical trials involving the use of stem-cell-derived retinal pigment epithelial cells for AMD treatment and stem cell-derived retinal cells/tissues for RP therapy. Finally, we discuss our future vision of regenerative treatment for retinal diseases with a partial focus on our studies and introduce other interesting approaches for restoring vision.
Project description:PurposeBecause human bone marrow (BM) CD34+ stem cells home into damaged tissue and may play an important role in tissue repair, this pilot clinical trial explored the safety and feasibility of intravitreal autologous CD34+ BM cells as potential therapy for ischemic or degenerative retinal conditions.MethodsThis prospective study enrolled six subjects (six eyes) with irreversible vision loss from retinal vascular occlusion, hereditary or nonexudative age-related macular degeneration, or retinitis pigmentosa. CD34+ cells were isolated under Good Manufacturing Practice conditions from the mononuclear cellular fraction of the BM aspirate using a CliniMACs magnetic cell sorter. After intravitreal CD34+ cell injection, serial ophthalmic examinations, microperimetry/perimetry, fluorescein angiography, electroretinography (ERG), optical coherence tomography (OCT), and adaptive optics OCT were performed during the 6-month follow-up.ResultsA mean of 3.4 million (range, 1-7 million) CD34+ cells were isolated and injected per eye. The therapy was well tolerated with no intraocular inflammation or hyperproliferation. Best-corrected visual acuity and full-field ERG showed no worsening after 6 months. Clinical examination also showed no worsening during follow-up except among age-related macular degeneration subjects in whom mild progression of geographic atrophy was noted in both the study eye and contralateral eye at 6-month follow-up, concurrent with some possible decline on multifocal ERG and microperimetry. Cellular in vivo imaging using adaptive optics OCT showed changes suggestive of new cellular incorporation into the macula of the hereditary macular degeneration study eye.ConclusionsIntravitreal autologous BM CD34+ cell therapy appears feasible and well tolerated in eyes with ischemic or degenerative retinal conditions and merits further exploration. (ClinicalTrials.gov number, NCT01736059.).