Project description:Youth (including both childhood and adolescence) is a period when the brain undergoes dramatic remodeling and is also a time when neuropsychiatric conditions often emerge. Many of these illnesses have substantial sex differences in prevalence, suggesting that sex differences in brain development may underlie differential risk for psychiatric symptoms between males and females. Substantial evidence documents sex differences in brain structure and function in adults, and accumulating data suggests that these sex differences may be present or emerge during development. Here we review the evidence for sex differences in brain structure, white matter organization, and perfusion during development. We then use these normative differences as a framework to understand sex differences in brain development associated with psychopathology. In particular, we focus on sex differences in the brain as they relate to anxiety, depression, psychosis, and attention-deficit/hyperactivity symptoms. Finally, we highlight existing limitations, gaps in knowledge, and fertile avenues for future research.
Project description:Psychotic experiences (PEs) occur in the general population, especially in children and adolescents, and are associated with poor psychosocial outcomes, impaired cognition, and increased risk of transition to psychosis. It is unknown how the presence and persistence of PEs during early adulthood affects cognition and brain function. The current study assessed working memory as well as brain function and structure in 149 individuals, with and without PEs, drawn from a population cohort. Observer-rated PEs were classified as persistent or transient on the basis of longitudinal assessments. Working memory was assessed using the n-back task during fMRI. Dynamic causal modeling (DCM) was used to characterize frontoparietal network configuration and voxel-based morphometry was utilized to examine gray matter. Those with persistent, but not transient, PEs performed worse on the n-back task, compared with controls, yet showed no significant differences in regional brain activation or brain structure. DCM analyses revealed greater emphasis on frontal connectivity within a frontoparietal network in those with PEs compared with controls. We propose that these findings portray an altered configuration of working memory function in the brain, potentially indicative of an adaptive response to atypical development associated with the manifestation of PEs.
Project description:Neuroimaging studies of the aging brain provide support that the strongest predictor of preserved memory and cognition in older age is brain maintenance, or relative lack of brain pathology. Evidence for brain maintenance comes from different levels of examination, but up to now relatively few studies have used a longitudinal design. Examining factors that promote brain maintenance in aging is a critical task for the future and may be combined with the use of new techniques for multimodal imaging.
Project description:Background: In spite of increasing evidence highlighting the role of dynamic functional connectivity (FC) in characterizing mental disorders, there is a lack of (a) reliable statistical methods to compute dynamic connectivity and (b) rigorous dynamic FC-based approaches for predicting mental health outcomes in heterogeneous disorders such as post-traumatic stress disorder (PTSD). Methods: In one of the first such efforts, we develop a reliable and accurate approach for estimating dynamic FC guided by brain structural connectivity (SC) computed using diffusion tensor imaging data and investigate the potential of the proposed multimodal dynamic FC to predict continuous mental health outcomes. We develop concrete measures of temporal network variability that are predictive of PTSD resilience, and identify regions whose temporal connectivity fluctuations are significantly related to resilience. Results: Our results illustrate that the multimodal approach is more sensitive to connectivity change points, it can clearly detect localized brain regions with the dynamic network features such as small-worldedness, clustering coefficients, and efficiency associated with resilience, and that it has superior predictive performance compared with existing static and dynamic network models when modeling PTSD resilience. Discussion: While the majority of resting-state network modeling in psychiatry has focused on static FC, our novel multimodal dynamic network analyses that are sensitive to network fluctuations allowed us to provide a model of neural correlates of resilience with high accuracy compared with existing static connectivity approaches or those that do not use brain SC information, and provided us with an expanded understanding of the neurobiological causes for PTSD. Impact statement The methods developed in this article provide reliable and accurate dynamic functional connectivity (FC) approaches by fusing multimodal imaging data that are highly predictive of continuous clinical phenotypes in heterogeneous mental disorders. Currently, there is very little theoretical work to explain how network dynamics might contribute to individual differences in behavior or psychiatric symptoms. Our analysis conclusively discovers localized brain resting-state networks, regions, and connections where variations in dynamic FC (that is estimated after incorporating brain structural connectivity information) are associated with post-traumatic stress disorder resilience, which could potentially provide valuable tools for the development of neural circuit modeling in psychiatry in the future.
Project description:The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.
Project description:Mastocytosis is a rare disease in which chronic symptoms are related to mast cell accumulation and activation. Patients can display depression-anxiety-like symptoms and cognitive impairment. The pathophysiology of these symptoms may be associated with tissular mast cell infiltration, mast cell mediator release or both. The objective of this study is to perform morphological or functional brain analyses in mastocytosis to identify brain changes associated with this mast cell disorder. We performed a prospective and monocentric comparative study to evaluate the link between subjective psycho-cognitive complaints, psychiatric evaluation and objective medical data using magnetic resonance imaging with morphological and perfusion sequences (arterial spin-labeled perfusion) in 39 patients with mastocytosis compared with 33 healthy controls. In the test cohort of 39 mastocytosis patients with psycho-cognitive complaints, we found that 49% of them had morphological brain abnormalities, mainly abnormal punctuated white matter abnormalities (WMA). WMA were equally frequent in cutaneous mastocytosis patients and indolent forms of systemic mastocytosis patients (42% and 41% of patients with WMA, respectively). Patients with WMA showed increased perfusion in the putamen compared with patients without WMA and with healthy controls. Putamen perfusion was also negatively correlated with depression subscores. This study demonstrates, for we believe the first time, a high prevalence of morphological and functional abnormalities in the brains of mastocytosis patients with neuropsychiatric complaints. Further studies are required to determine the mechanism underpinning this association and to ascertain its specificity.
Project description:Common neuroimaging findings in mild traumatic brain injury (mTBI), including sport-related concussion (SRC), are reviewed based on computed tomography and magnetic resonance imaging (MRI). Common abnormalities radiologically identified on the day of injury, typically a computed tomographic scan, are in the form of contusions, small subarachnoid or intraparenchymal hemorrhages as well as subdural and epidural collections, edema, and skull fractures. Common follow-up neuroimaging findings with MRI include white matter hyperintensities, hypointense signal abnormalities that reflect prior hemorrhage, focal encephalomalacia, presence of atrophy and/or dilated Virchow-Robins perivascular space. The MRI findings from a large pediatric mTBI study show low frequency of positive MRI findings at 6 months postinjury. The review concludes with an examination of some of the advanced MRI-based image analysis methods that can be performed in the patient who has sustained an mTBI.
Project description:Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Project description:Brain age prediction based on imaging data and machine learning (ML) methods has great potential to provide insights into the development of cognition and mental disorders. Though different ML models have been proposed, a systematic comparison of ML models in combination with imaging features derived from different modalities is still needed. In this study, we evaluate the prediction performance of 36 combinations of imaging features and ML models including deep learning. We utilize single and multimodal brain imaging data including MRI, DTI, and rs-fMRI from a large data set with 839 subjects. Our study is a follow-up to the initial work (Liang et al., 2019. Human Brain Mapping) to investigate different analytic strategies to combine data from MRI, DTI, and rs-fMRI with the goal to improve brain age prediction accuracy. Additionally, the traditional approach to predicting the brain age gap has been shown to have a systematic bias. The potential nonlinear relationship between the brain age gap and chronological age has not been thoroughly tested. Here we propose a new method to correct the systematic bias of brain age gap by taking gender, chronological age, and their interactions into consideration. As the true brain age is unknown and may deviate from chronological age, we further examine whether various levels of behavioral performance across subjects predict their brain age estimated from neuroimaging data. This is an important step to quantify the practical implication of brain age prediction. Our findings are helpful to advance the practice of optimizing different analytic methodologies in brain age prediction.
Project description:Purpose of reviewThe prevalence of new public datasets of brain-wide and single-cell transcriptome data has created new opportunities to link neuroimaging findings with genetic data. The aim of this study is to present the different methodological approaches that have been used to combine this data.Recent findingsDrawing from various sources of open access data, several studies have been able to correlate neuroimaging maps with spatial distribution of brain expression. These efforts have enabled researchers to identify functional annotations of related genes, identify specific cell types related to brain phenotypes, study the expression of genes across life span and highlight the importance of selected brain genes in disease genetic networks.SummaryNew transcriptome datasets and methodological approaches complement current neuroimaging work and will be crucial to improve our understanding of the biological mechanism that underlies many neurological conditions.