Project description:IntroductionThe efficacy of single injections of abobotulinumtoxinA (Dysport) is established in adults with upper limb spasticity. In this study we assessed the effects of repeated injections of abobotulinumtoxinA over 1 year.MethodsPatients (n = 258, safety population) received 500 U, 1,000 U, or 1,500 U (1,500-U dose included 500-U shoulder injections) for up to 4 or 5 treatment cycles. Assessments included treatment-emergent adverse events (TEAEs), muscle tone, passive and active range of motion (XV1, XA ), angle of catch (XV3 ), Disability Assessment Scale (DAS) score, Modified Frenchay Scale (MFS) score, and Physician Global Assessment (PGA) score.ResultsThe incidence of TEAEs decreased across cycles. Muscle tone reduction and XV1 remained stable across cycles, whereas XV3 and XA continued to improve at the finger, wrist, and elbow flexors. DAS and PGA improved across cycles. MFS improved best with 1,500 U.DiscussionA favorable safety profile and continuous improvements in active movements and perceived and active function were associated with repeated abobotulinumtoxinA injections in upper limb muscles. Muscle Nerve 57: 245-254, 2018.
Project description:People living with cerebral palsy (CP) exhibit motor and sensory impairments that affect unimanual and bimanual functions. The importance of sensory functions for motor control is well known, but the association between motor and sensory functions remains unclear in people living with CP. The objective of this systematic review was to characterize the relationship between sensory deficits and upper limb motor function in individuals living with CP. Five databases were screened. The inclusion criteria were: (1) including people living with CP, (2) reporting measurements of upper limb motor and sensory functions. A qualitative analysis of the studies' level of evidence was done. Thirty-three articles were included. Twenty-five articles evaluated tactile functions, 10 proprioceptive functions and 7 visual functions; 31 of the articles reported on unimanual functions and 17 of them reported on bimanual functions. Tactile functions showed a moderate to high association; it was not possible to reach definitive conclusions for proprioceptive and visual functions. The heterogeneity of the results limits the ability to draw definitive conclusions. Further studies should aim to perform more comprehensive assessments of motor and sensory functions, to determine the relative contribution of various sensory modalities to simple and more complex motor functions.
Project description:Individuals with cerebral palsy have difficulties performing activities of daily living. Beyond motor execution impairments, they exhibit motor planning deficits contributing to their difficulties. The objective of this review is to synthesize the behavioral evidence of motor planning deficits during an upper limb motor task in children, adolescents and young adults with cerebral palsy aged between 3 and 21 years. The inclusion criteria were: (1) including individuals with cerebral palsy from 3 to 21 years old; (2) assessing upper limb motor planning. Six databases were screened. The quality assessment of the studies was performed. Forty-six studies and 686 participants were included. Five articles have been identified as very high quality, 12 as high, 20 as moderate, six as low, three as very low. Force planning studies reported a deficit for the more affected hand but adequate performances for the less affected hand. Object-manipulation studies reported hand posture planning deficits irrespectively of the hand assessed. Motor planning deficits has been shown in the more affected hand for force scaling, while the results for other variables showed overall deficits. Hence, variables affected by motor planning deficits in both hands should be considered in children with cerebral palsy to optimize intervention.
Project description:BackgroundFocal treatment of Parkinson's disease tremor by botulinum toxin type A incobotulinumtoxinA (BoNT-A) injections has been inadequately investigated and at best provides modest relief with significant muscle weakness. Complexity of multi-joint tremulous movements results in non-individualized dosing regimens. This 38-week open-label study used kinematic technology to guide muscle selection and improve efficacy of incobotulinumtoxinA (BoNT-A) injections for Parkinson's disease tremor.MethodsParticipants (n=28) attended study visits at weeks 0, 6, 16, 22, 32, and 38, and were injected with BoNT-A at weeks 0, 16, and 32. During each visit, clinical tremor scales, the Unified Parkinson's Disease Rating Scale (UPDRS) and the Fahn-Tolosa-Marin (FTM), and kinematic assessments were conducted. Participants performed rest and postural scripted tasks with motion sensors placed over the wrist, elbow, and shoulder joints where tremor was quantified by angular root mean square (RMS) amplitude in multiple degrees of freedom at each joint. Injection parameters were determined using the clinician's interpretation of which muscles would contribute to the upper limb tremor biomechanics analyzed kinematically.ResultsKinematic measures of tremor amplitude allowed detailed segmentation of tremor into directional components at each arm joint permitting a statistically significant decrease in mean UPDRS item 20 (rest tremor) at week 16 (p=0.006) and at week 32 (p=0.014), and in FTM tremor severity scores at week 6 (p=0.024). Ten participants perceived mild muscle weakness following the third treatment, which did not interfere with performing activities of daily living.DiscussionKinematics is a simple method for standardizing assessments and treatment of upper limb Parkinson's disease tremor, thereby personalizing tremor therapy and optimizing the effect of BoNT-A injections for Parkinson's disease tremor.
Project description:Robotic therapy can improve upper limb function in hemiparesis. Excitatory transcranial direct current stimulation (tDCS) can prime brain motor circuits before therapy.We tested safety and efficacy of tDCS plus robotic therapy in an adult with unilateral spastic cerebral palsy (USCP).In each of 36 sessions, anodal tDCS (2 mA, 20 min) was applied over the motor map of the affected hand. Immediately after tDCS, the participant completed robotic therapy, using the shoulder, elbow, and wrist (MIT Manus). The participant sat in a padded chair with affected arm abducted, forearm supported, and hand grasping the robot handle. The participant controlled the robot arm with his affected arm to move a cursor from the center of a circle to each of eight targets (960 movements). Motor function was tested before, after, and six months after therapy with the Wolf Motor Function Test (WMFT) and Fugl-Meyer (FM).Reaching accuracy on the robot task improved significantly after therapy. The WMFT and FM improved clinically meaningful amounts after therapy. The motor map of the affected hand expanded after therapy. Improvements were maintained six months after therapy.Combined tDCS and robotics safely improved upper limb function in an adult with USCP.
Project description:BackgroundDetecting differences in upper limb use in children with unilateral cerebral palsy (UCP) is challenging and highly dependent on examiner experience. The recent introduction of technologies in the clinical environment, and in particular the use of wearable sensors, can provide quantitative measurement to overcome this issue. This study aims to evaluate ActiGraph GT3X+ as a tool for measuring asymmetry in the use of the two upper limbs (ULs) during the assessment with a standardized clinical tool, the Assisting Hand Assessment (AHA) in UCP patients aged 3-25 years compared to age-matched typically developing (TD) subjects.MethodsFifty children with UCP and 50 TD subjects were assessed with AHA while wearing ActiGraphs GT3X+ on both wrists. The mean activity of each hand (dominant and non-dominant, MADH and MANDH, respectively) and the asymmetry index (AI) were calculated. Two linear mixed model analyses were carried out to evaluate how dependent actigraphic variables (i.e. MANDH and AI) varied by group (TD vs UCP) and among levels of manual ability based on Manual Ability Classification System (MACS). In both models age, sex, side of hemiplegia, presence/absence of mirror movements were specified as random effects.ResultsThe MANDH was significantly lower in UCP compared to TD, while the AI was significantly higher in UCP compared to TD. Moreover, in UCP group there were significant differences related to MACS levels, both for MANDH and AI. None of the random variables (i.e. age, sex, side, presence/absence of mirror movements) showed significant interaction with MANDH and AI.ConclusionsThese results confirm that actigraphy could provide, in a standardized setting, a quantitative description of differences between upper limbs activity.Trial registrationClincalTrials.gov, NCT03054441 . Registered 15 February 2017.
Project description:Background-Movement patterns in dyskinetic cerebral palsy (DCP) are characterized by abnormal postures and involuntary movements. Current evaluation tools in DCP are subjective and time-consuming. Sensors could yield objective information on pathological patterns in DCP, but their reliability has not yet been evaluated. The objectives of this study were to evaluate (i) reliability and (ii) discriminative ability of sensor parameters. Methods-Inertial measurement units were placed on the arm, forearm, and hand of individuals with and without DCP while performing reach-forward, reach-and-grasp-vertical, and reach-sideways tasks. Intra-class correlation coefficients (ICC) were calculated for reliability, and Mann-Whitney U-tests for between-group differences. Results-Twenty-two extremities of individuals with DCP (mean age 16.7 y) and twenty individuals without DCP (mean age 17.2 y) were evaluated. ICC values for all sensor parameters except jerk and sample entropy ranged from 0.50 to 0.98 during reach forwards/sideways and from 0.40 to 0.95 during reach-and-grasp vertical. Jerk and maximal acceleration/angular velocity were significantly higher for the DCP group in comparison with peers. Conclusions-This study was the first to assess the reliability of sensor parameters in individuals with DCP, reporting high between- and within-session reliability for the majority of the sensor parameters. These findings suggest that pathological movements of individuals with DCP can be reliably captured using a selection of sensor parameters.
Project description:IntroductionUpper limb impairment is a common consequence of stroke, significantly affecting the quality of life and independence of survivors. This scoping review assesses the emerging field of muscle synergy analysis in enhancing upper limb rehabilitation, focusing on the comparison of various methodologies and their outcomes. It aims to standardize these approaches to improve the effectiveness of rehabilitation interventions and drive future research in the domain.Evidence acquisitionStudies included in this scoping review focused on the analysis of muscle synergies during longitudinal rehabilitation of stroke survivors' upper limbs. A systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, until September 2023, and was guided by the PRISMA for scoping review framework.Evidence synthesisFourteen studies involving a total of 247 stroke patients were reviewed, featuring varied patient populations and rehabilitative interventions. Protocols differed among studies, with some utilizing robotic assistance and others relying on traditional therapy methods. Muscle synergy extraction was predominantly conducted using Non-Negative Matrix Factorization from electromyography data, focusing on key upper limb muscles essential for shoulder, elbow, and wrist rehabilitation. A notable observation across the studies was the heterogeneity in findings, particularly in the changes observed in the number, weightings, and temporal coefficients of muscle synergies. The studies indicated varied and complex relationships between muscle synergy variations and clinical outcomes. This diversity underscored the complexity involved in interpreting muscle coordination in the stroke population. The variability in results was also influenced by differing methodologies in muscle synergy analysis, highlighting a need for more standardized approaches to improve future research comparability and consistency.ConclusionsThe synthesis of evidence presented in this scoping review highlights the promising role of muscle synergy analysis as an indicator of motor control recovery in stroke rehabilitation. By offering a comprehensive overview of the current state of research and advocating for harmonized methodological practices in future longitudinal studies, this scoping review aspires to advance the field of upper limb rehabilitation, ensuring that post-stroke interventions are both scientifically grounded and optimally beneficial for patients.
Project description:ObjectiveStroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements from paralyzed joints in severely impaired chronic stroke patients.MethodsMuscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.93 ± 2.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined.ResultsDecoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles.InterpretationThese results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments.
Project description:ObjectiveThis post hoc analysis assessed the impact of repeated incobotulinumtoxinA injections on muscle tone, disability, and caregiver burden in adults with upper-limb post-stroke spasticity.DesignData from the double-blind, placebo-controlled main period and three open-label extension cycles of two Phase 3, randomized, multicentre trials were pooled.MethodsSubjects received incobotulinumtoxinA 400 Units at 12-week intervals (±3 days) (study 3001, NCT01392300) or ≤ 400 Units at ≥12-week intervals based on clinical need (study 0410, NCT00432666). Ashworth Scale (AS) arm sumscore (sum of elbow, wrist, finger and thumb flexor, and forearm pronator AS scores), Disability Assessment Scale (DAS), and Carer Burden Scale (CBS) scores were assessed.ResultsAmong 465 subjects, from study baseline to 4 weeks post-injection, mean (standard deviation) AS arm sumscore improved continuously: main period, -3.23 (2.55) (placebo, -1.49 (2.09)); extension cycles 1, 2, and 3, -4.38 (2.85), -4.87 (3.05), and -5.03 (3.02), respectively. DAS principal target domain responder rate increased from 47.4% in the main period (placebo 27.2%) to 66.6% in extension cycle 3. Significant improvements in CBS scores 4 weeks post-injection accompanied improved functional disability in all cycles.ConclusionIncobotulinumtoxinA conferred sustained improvements in muscle tone, disability, and caregiver burden in subjects with upper-limb post-stroke spasticity.