Unknown

Dataset Information

0

Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos.


ABSTRACT: Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased in the glial cells compared to the neural progenitor cells. However, H3K9ac signals are increased in a group of genes that are up-regulated in glial cells and involved in gliogenesis. There occurs extensive nucleosome remodeling including shift, loss, and gain. Nucleosome depletion regions (NDRs) form in both promoters and enhancers. As a result, the associated genes are up-regulated. Intriguingly, NDRs form in two fashions: nucleosome shift and eviction. Moreover, the mode of NDR formation is independent of the original chromatin state of enhancers in the neural progenitor cells.

SUBMITTER: Ye Y 

PROVIDER: S-EPMC5025732 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos.

Ye Youqiong Y   Gu Liang L   Chen Xiaolong X   Shi Jiejun J   Zhang Xiaobai X   Jiang Cizhong C  

Scientific reports 20160916


Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased  ...[more]

Similar Datasets

| S-EPMC5344203 | biostudies-literature
2016-11-20 | GSE80458 | GEO
2016-11-20 | GSE80456 | GEO
2016-11-20 | GSE80457 | GEO
2016-11-20 | GSE83377 | GEO
| S-EPMC3075915 | biostudies-literature
| S-EPMC4558493 | biostudies-literature
| S-EPMC2570622 | biostudies-literature
| PRJNA318977 | ENA
2016-11-20 | GSE83376 | GEO