Ontology highlight
ABSTRACT: Methods
We investigated the feasibility of PTT for ovarian cancer under the guidance of PET and MR temperature imaging using copper sulfide nanoparticles (CuS NPs). The tumor distribution of the CuS NPs after systemic administration was assessed using highly sensitive, quantifiable PET imaging. Two wavelengths of near-infrared (NIR) lasers-808 and 980 nm-were tested for PTT using noninvasive MR temperature imaging real-time monitoring.Results
The in vivo studies revealed that the 980-nm NIR laser had better photothermal effects than the 808-nm NIR laser. These results were in accord with the histologic findings. In vivo PTT using CuS NPs combined with 980-nm laser irradiation achieved significant tumor ablation compared with no treatment control in both subcutaneous (P = 0.007) and orthotopic (P < 0.001) models of ovarian cancer with regard to the percentage of necrotic damage.Conclusion
Our results indicate that real-time monitoring of the accuracy of PTT is a promising approach for future clinical translation of this emerging thermal ablation technique.
SUBMITTER: Zhou M
PROVIDER: S-EPMC5093070 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
Zhou Min M Melancon Marites M Stafford R Jason RJ Li Junjie J Nick Alpa M AM Tian Mei M Sood Anil K AK Li Chun C
Journal of nuclear medicine : official publication, Society of Nuclear Medicine 20160609 11
Imaging-based techniques have enabled the direct integration of noninvasive imaging with minimally invasive interventions such as photothermal therapy (PTT) to improve the precision of treatment.<h4>Methods</h4>We investigated the feasibility of PTT for ovarian cancer under the guidance of PET and MR temperature imaging using copper sulfide nanoparticles (CuS NPs). The tumor distribution of the CuS NPs after systemic administration was assessed using highly sensitive, quantifiable PET imaging. T ...[more]