Ontology highlight
ABSTRACT: Background
Several activities are attributed to antimicrobial peptides (AMPs), including bacterial killing, leucocyte recruitment and angiogenesis. Despite promises of advanced cellular therapies for treatment of diabetic foot ulcer, it is currently accepted that paracrine factors rather than cellular components are causative for the observed effects. Whether AMPs are present in the mononuclear cell (MNC) secretome (MNC-sec) of white blood cells that are beneficial in experimental wound healing is not known.Materials and methods
Antimicrobial activity of the secretomes of nonirradiated (MNC-sec) and γ-irradiated MNCs (MNC-sec rad) was analysed by microdilution assay. AMPs were determined by quantitative real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Whether human MNC-sec rad causes AMP secretion in vivo was examined in an experimental rat model. Image flow cytometry was used to determine the type of cell death induced in MNCs after exposure to γ-radiation.Results
The antimicrobial activity assay revealed a bactericidal activity of MNC-sec rad and to a lesser degree also of MNC-sec. Image flow cytometry showed that γ-irradiation of MNCs induced early apoptosis followed mainly by necroptosis. RT-PCR and ELISA revealed a high abundance of different AMPs in the secretome of MNCs. In addition, human MNC-sec elicited an increase in de novo endogenous AMP production in rats in vivo.Conclusion
We provide evidence that the secretome of MNCs has direct and indirect positive effects on the immune defence system, including augmentation of antibacterial properties. Our data further suggest that necroptosis could play a key role for the release of paracrine factors and the therapeutic action of MNC-sec rad.
SUBMITTER: Kasiri MM
PROVIDER: S-EPMC5113772 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
Kasiri Mohammad Mahdi MM Beer Lucian L Nemec Lucas L Gruber Florian F Pietkiewicz Sabine S Haider Thomas T Simader Elisabeth Maria EM Traxler Denise D Schweiger Thomas T Janik Stefan S Taghavi Shahrokh S Gabriel Christian C Mildner Michael M Ankersmit Hendrik Jan HJ
European journal of clinical investigation 20160926 10
<h4>Background</h4>Several activities are attributed to antimicrobial peptides (AMPs), including bacterial killing, leucocyte recruitment and angiogenesis. Despite promises of advanced cellular therapies for treatment of diabetic foot ulcer, it is currently accepted that paracrine factors rather than cellular components are causative for the observed effects. Whether AMPs are present in the mononuclear cell (MNC) secretome (MNC-sec) of white blood cells that are beneficial in experimental wound ...[more]