Unknown

Dataset Information

0

Molecular Basis for Vitamin A Uptake and Storage in Vertebrates.


ABSTRACT: The ability to store and distribute vitamin A inside the body is the main evolutionary adaptation that allows vertebrates to maintain retinoid functions during nutritional deficiencies and to acquire new metabolic pathways enabling light-independent production of 11-cis retinoids. These processes greatly depend on enzymes that esterify vitamin A as well as associated retinoid binding proteins. Although the significance of retinyl esters for vitamin A homeostasis is well established, until recently, the molecular basis for the retinol esterification enzymatic activity was unknown. In this review, we will look at retinoid absorption through the prism of current biochemical and structural studies on vitamin A esterifying enzymes. We describe molecular adaptations that enable retinoid storage and delineate mechanisms in which mutations found in selective proteins might influence vitamin A homeostasis in affected patients.

SUBMITTER: Chelstowska S 

PROVIDER: S-EPMC5133064 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular Basis for Vitamin A Uptake and Storage in Vertebrates.

Chelstowska Sylwia S   Widjaja-Adhi Made Airanthi K MA   Silvaroli Josie A JA   Golczak Marcin M  

Nutrients 20161026 11


The ability to store and distribute vitamin A inside the body is the main evolutionary adaptation that allows vertebrates to maintain retinoid functions during nutritional deficiencies and to acquire new metabolic pathways enabling light-independent production of 11-<i>cis</i> retinoids. These processes greatly depend on enzymes that esterify vitamin A as well as associated retinoid binding proteins. Although the significance of retinyl esters for vitamin A homeostasis is well established, until  ...[more]

Similar Datasets

| PRJEB58730 | ENA
| S-EPMC7322172 | biostudies-literature
| S-EPMC3500170 | biostudies-literature
| S-EPMC4391915 | biostudies-literature
| S-EPMC4361918 | biostudies-literature
| S-EPMC20806 | biostudies-literature
| S-EPMC3982047 | biostudies-literature
| S-EPMC3145266 | biostudies-literature
| S-EPMC8897410 | biostudies-literature
| S-EPMC10643130 | biostudies-literature