Project description:Stereotactic body radiotherapy is the technique of accurately delivering high doses of radiotherapy to small volume targets in a single or small number of sessions. The high biological effective dose of this treatment is reflected in the high rates of local control achieved across multiple tumour sites. Toxicity of the treatment can be significant and ongoing prospective trials will help define the utility of this treatment as an alternative to surgery in treating primary tumours and oligometastatic disease. Longer follow-up and survival data from prospective trials will be essential in determining the value of this resource-intensive treatment. The opportunity to combine this treatment with systemic therapies and its potential synergy with immunotherapy opens up interesting avenues for research in the future.
Project description:Immunotherapy has revolutionized the treatment of metastatic non-small cell lung cancer (NSCLC). Oligometastasis has been associated with better prognosis than widespread metastatic disease and may be curable by stereotactic body radiotherapy (SBRT). SBRT can stimulate immunogenic anti-tumor activity, which can be further augmented when combined with immunotherapy, such as immune checkpoint inhibitors (ICIs). Thus, its combination with immunotherapy was recognized as a promising treatment option, especially in the metastatic setting. However, the most optimal approach to combine SBRT with immunotherapy remains controversial with early clinical evidence emerging. Here, we review the current clinical evidence supporting the combination of SBRT with immunotherapy in the treatment of metastatic NSCLC. Also, we discuss the current controversies and areas for further exploration associated with this treatment strategy.
Project description:BackgroundClinical trials evaluating immune checkpoint inhibition (ICI) in recurrent high-grade gliomas (rHGG) report 7%-20% 6-month progression-free survival (PFS), while re-irradiation demonstrates 28%-39% 6-month PFS.AimsWe evaluate outcomes of patients treated with ICI and concurrent re-irradiation utilizing stereotactic body radiotherapy/fractionated stereotactic radiosurgery (SBRT) compared to ICI monotherapy.Methods and resultsPatients ≥18-years-old with rHGG (WHO grade III and IV) receiving ICI + SBRT or ICI monotherapy between January 1, 2016 and January 1, 2019 were included. Adverse events, 6-month PFS and overall survival (OS) were assessed. Log-rank tests were used to evaluate PFS and OS. Histogram analyses of apparent diffusion coefficient maps and dynamic contrast-enhanced magnetic resonance perfusion metrics were performed. Twenty-one patients with rHGG (ICI + SBRT: 16; ICI: 5) were included. The ICI + SBRT and ICI groups received a mean 7.25 and 6.2 ICI cycles, respectively. There were five grade 1, one grade 2 and no grade 3-5 AEs in the ICI + SBRT group, and four grade 1 and no grade 2-5 AEs in the ICI group. Median PFS was 2.85 and 1 month for the ICI + SBRT and ICI groups; median OS was 7 and 6 months among ICI + SBRT and ICI groups, respectively. There were significant differences in pre and posttreatment tumor volume in the cohort (12.35 vs. 20.51; p = .03), but not between treatment groups.ConclusionsIn this heavily pretreated cohort, ICI with re-irradiation utilizing SBRT was well tolerated. Prospective studies are warranted to evaluate potential therapeutic benefits to re-irradiation with ICI + SBRT in rHGG.
Project description:Prostate cancer remains the most common and second most deadly cancer diagnosed amongst U.S. men. External beam radiotherapy is a standard-of-care definitive treatment option for localized prostate cancer and historically constituted an 8-9-week treatment course comprised of 39-45 doses of 1.8-2.0 Gy each (conventional fractionation, CF). Based on the notion that prostate cancer may respond favorably to a higher dose per day, considerable research efforts have been focused on characterizing the safety and efficacy profile of shorter and shorter radiation courses. Ultrahypofractionation (UHF) involves condensing the radiation course into just 5-7 treatments of 6-8 Gy each. When utilizing modern techniques that allow the precise sculpting of a dose distribution that delivers high doses to the prostate and lower doses to surrounding normal tissues over five or fewer treatments, this treatment is called stereotactic body radiotherapy (SBRT). Two randomized trials (HYPO-RT-PC and PACE-B) have compared UHF to longer radiation courses. The former demonstrated that UHF and CF have similar long-term toxicity and efficacy, while the latter demonstrated that modern SBRT has equivalent short-term toxicity as well. A separate report from a consortium of studies data provides prospective, albeit nonrandomized, data supporting the longer-term safety and efficacy of SBRT specifically. Thus, mounting high-level evidence suggests that SBRT is an acceptable standard care of option for men with localized prostate cancer.
Project description:BackgroundStereotactic body radiotherapy (SBRT) is a precise and effective treatment for pulmonary oligometastases, offering high local control (LC) rates. However, the optimal SBRT dose when combined with immunotherapy remains unclear, and there is a lack of comprehensive studies focusing on dose optimization in this setting. This study addresses this knowledge gap by exploring different SBRT dose regimens and their impact on progression-free survival (PFS), overall survival (OS), and LC in patients receiving concurrent immunotherapy, offering novel insights into the synergistic effects of these treatments.MethodsA retrospective cohort study was conducted of 101 patients with 141 pulmonary oligometastases treated from April 2018 to April 2022. Inclusion criteria included patients with a maximum of five lung metastases and an Eastern Cooperative Oncology Group performance status of ≤2. Patients received SBRT with doses ranging from 50-70 Gy in 5-10 fractions. Follow-up was performed quarterly, and the best dose was determined by comparing survival outcomes across different dose groups. The patients received SBRT with doses ranging from 50-70 Gy in 5-10 fractions. Patient demographics, tumor characteristics, treatment details, and outcomes were collected. The Kaplan-Meier method was used for the survival analysis, and Cox regression models were used to identify prognostic factors for LC, PFS, and OS.ResultsThe median follow-up for the 101 patients was 22.4 months (range, 1-58 months). The cohort comprised 82.2% male patients with a median age of 64 years (range, 36-81 years). The majority of the patients (64.4%) had primary tumors originating from non-lung sites, with adenocarcinoma being the predominant histological subtype (47.5%). The median tumor size was 13.5 mm. Across the entire cohort, the median OS was 39 months, and the median PFS was 11 months. Pre-treatment with immunotherapy significantly improved outcomes: the PFS increased to 13 months compared to 7 months for those who did not receive immunotherapy [P=0.02, hazard ratio (HR) = 0.523, 95% confidence interval (CI): 0.302-0.906], and the OS was also significantly improved (P=0.008, HR =0.411, 95% CI: 0.214-0.792). The SBRT regimen of 60 Gy in 10 fractions provided the best outcomes, with a median OS of 39 months, a median PFS of 10 months, and a LC rate of 92.4%, with relatively low toxicity compared to other regimens.ConclusionsSBRT is a potent, minimally invasive option for managing pulmonary oligometastases, especially when preceded by immunotherapy. The 60 Gy in 10 fractions regimen demonstrated significant efficacy in terms of OS and LC, while maintaining manageable toxicity. Although the retrospective nature of the study introduces some selection bias, this dose regimen appears to offer a promising therapeutic option for pulmonary oligometastases. Further validation through well-designed prospective studies would help confirm the optimal SBRT dose and clarify the role of immunotherapy in this setting.
Project description:Prostate cancer is the most common non-cutaneous cancer in males. There are a number of options for patients with localized early stage disease, including active surveillance for low-risk disease, surgery, brachytherapy, and external beam radiotherapy. Increasingly, external beam radiotherapy, in the form of dose-escalated and moderately hypofractionated regimens, is being utilized in prostate cancer, with randomized evidence to support their use. Stereotactic body radiotherapy, which is a form of extreme hypofractionation, delivered with high precision and conformality typically over 1 to 5 fractions, offers a more contemporary approach with several advantages including being non-invasive, cost-effective, convenient for patients, and potentially improving patient access. In fact, one study has estimated that if half of the patients currently eligible for conventional fractionated radiotherapy in the United States were treated instead with stereotactic body radiotherapy, this would result in a total cost savings of US$250 million per year. There is also a strong radiobiological rationale to support its use, with prostate cancer believed to have a low α/β ratio and therefore being preferentially sensitive to larger fraction sizes. To date, there are no published randomized trials reporting on the comparative efficacy of stereotactic body radiotherapy compared to alternative treatment modalities, although multiple randomized trials are currently accruing. Yet, early results from the randomized phase III study of HYPOfractionated RadioTherapy of intermediate risk localized Prostate Cancer (HYPO-RT-PC) trial, as well as multiple single-arm phase I/II trials, indicate low rates of late adverse effects with this approach. In patients with low- to intermediate-risk disease, excellent biochemical relapse-free survival outcomes have been reported, albeit with relatively short median follow-up times. These promising early results, coupled with the enormous potential cost savings and implications for resource availability, suggest that stereotactic body radiotherapy will take center stage in the treatment of prostate cancer in the years to come.
Project description:PurposeIn this study, we aimed to assess the abscopal effect (AE) after CyberKnife stereotactic body radiotherapy (SBRT) in metastatic breast cancer patients without immunotherapy.MethodsWe reviewed breast cancer patients who received SBRT with a fraction size of ≥ 6 Gy for metastatic lesions between July 2008 and December 2021. We selected patients who had at least one measurable extracranial lesion in addition to SBRT target lesions and were not treated with immunotherapy. A total of 40 SBRT cases from 34 patients were included in the analysis. The AE was defined as occurring before the overall progression of the disease, regardless of the use of systemic treatment.ResultsThe median follow-up duration was 16.4 months. Among 40 SBRT cases, the AE was observed in 10 (25.0%) with a median interval of 2.1 months. Of these lesions, 70.0% did not progress for one year. In multivariate logistic regression analysis, no change in systemic treatment after SBRT was significantly associated with an increase in the AE (odds ratio [OR] = 1.428, 95% confidence interval [CI] = 1.108 - 1.841, p = 0.009). A post-SBRT neutrophil-to-lymphocyte ratio (NLR) of < 2 marginally increased the AE (OR = 1.275, 95% CI = 0.998 - 1.629, p = 0.060). However, a high SBRT dose and large planning target volume did not (p = 0.858 and 0.152, respectively) in univariate analysis.ConclusionsOne out of four patients experienced the AE after SBRT in the absence of immunotherapy. The AE could occur more frequently when systemic treatment remains unchanged, and patients have a low NLR after SBRT.
Project description:Background and purposeDose prescription in stereotactic body radiotherapy (SBRT) for liver tumors is often limited by the mean liver dose. We explore the concept of spatiotemporal fractionation as an approach to facilitate further dose escalation in liver SBRT.Materials and methodsSpatiotemporal fractionation schemes aim at partial hypofractionation in the tumor along with near-uniform fractionation in normal tissues. This is achieved by delivering distinct dose distributions in different fractions, which are designed such that each fraction delivers a high single fraction dose to complementary parts of the tumor while creating a similar dose bath in the surrounding noninvolved liver. Thereby, higher biologically effective doses (BED) can be delivered to the tumor without increasing the mean BED in the liver. Planning of such treatments is performed by simultaneously optimizing multiple dose distributions based on their cumulative BED. We study this concept for five liver cancer patients with different tumor geometries.ResultsSpatiotemporal fractionation presents a method of increasing the ratio of prescribed tumor BED to mean BED in the noninvolved liver by approximately 10-20%, compared to conventional SBRT using identical fractions.ConclusionsSpatiotemporal fractionation may reduce the risk of liver toxicity or facilitate dose escalation in liver SBRT in circumstances where the mean dose to the non-involved liver is the prescription-limiting factor.
Project description:Stereotactic body radiotherapy (SBRT) has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC) in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta), lung parenchyma (e.g., radiation pneumonitis), and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve). We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.