Unknown

Dataset Information

0

A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone.


ABSTRACT: Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36?kDa) and with specific activity of 4.4 to 12?U?mg-1 . Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C.?globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in ?-configuration and 16?-hydroxytestosterone. The reaction performed on a 100?mg scale resulted in the formation of about 90?% of the epoxide and 10?% of the hydroxylation product, both of which could be isolated with purities above 96?%. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.

SUBMITTER: Kiebist J 

PROVIDER: S-EPMC5363369 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone.

Kiebist Jan J   Schmidtke Kai-Uwe KU   Zimmermann Jörg J   Kellner Harald H   Jehmlich Nico N   Ullrich René R   Zänder Daniel D   Hofrichter Martin M   Scheibner Katrin K  

Chembiochem : a European journal of chemical biology 20170301 6


Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and n  ...[more]

Similar Datasets

| S-EPMC3662921 | biostudies-literature
| S-EPMC6278401 | biostudies-other
| PRJNA12794 | ENA
| S-EPMC4988377 | biostudies-literature
| S-EPMC4278173 | biostudies-literature
| S-EPMC7655485 | biostudies-literature
| S-EPMC4703973 | biostudies-literature
| S-EPMC9064350 | biostudies-literature
| S-EPMC8398356 | biostudies-literature
| S-EPMC6562794 | biostudies-literature