Unknown

Dataset Information

0

Clock Gene Dysregulation Induced by Chronic ER Stress Disrupts ?-cell Function.


ABSTRACT: In Wfs1-/-Ay/a islets, in association with endoplasmic reticulum (ER) stress, D-site-binding protein (Dbp) expression decreased and Nuclear Factor IL-3 (Nfil3)/E4 Promoter-binding protein 4 (E4bp4) expression increased, leading to reduced DBP transcriptional activity. Similar alterations were observed with chemically-induced ER stress. Transgenic mice expressing E4BP4 under the control of the mouse insulin I gene promoter (MIP), in which E4BP4 in ?-cells is expected to compete with DBP for D-box, displayed remarkable glucose intolerance with severely impaired insulin secretion. Basal ATP/ADP ratios in MIP-E4BP4 islets were elevated without the circadian oscillations observed in wild-type islets. Neither elevation of the ATP/ADP ratio nor an intracellular Ca2+ response was observed after glucose stimulation. RNA expressions of genes involved in insulin secretion gradually increase in wild-type islets early in the feeding period. In MIP-E4BP4 islets, however, these increases were not observed. Thus, molecular clock output DBP transcriptional activity, susceptible to ER stress, plays pivotal roles in ?-cell priming for insulin release by regulating ?-cell metabolism and gene expressions. Because ER stress is also involved in the ?-cell failure in more common Type-2 diabetes, understanding the currently identified ER stress-associated mechanisms warrants novel therapeutic and preventive strategies for both rare form and common diabetes.

SUBMITTER: Ohta Y 

PROVIDER: S-EPMC5405175 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


In Wfs1<sup>-/-</sup>A<sup>y</sup>/a islets, in association with endoplasmic reticulum (ER) stress, D-site-binding protein (Dbp) expression decreased and Nuclear Factor IL-3 (Nfil3)/E4 Promoter-binding protein 4 (E4bp4) expression increased, leading to reduced DBP transcriptional activity. Similar alterations were observed with chemically-induced ER stress. Transgenic mice expressing E4BP4 under the control of the mouse insulin I gene promoter (MIP), in which E4BP4 in β-cells is expected to comp  ...[more]

Similar Datasets

| S-EPMC5764397 | biostudies-literature
| S-EPMC3545216 | biostudies-literature
| S-EPMC3463592 | biostudies-literature
| S-EPMC7080583 | biostudies-literature
| S-EPMC7858244 | biostudies-literature
| S-EPMC7571335 | biostudies-literature