Project description:ContextChemerin is a new adipokine associated with obesity and the metabolic syndrome. Gene expression levels of chemerin were elevated in the adipose depots of obese compared with lean animals and was markedly elevated during differentiation of fibroblasts into mature adipocytes.ObjectiveThe objective of the study was to identify factors that affect the regulation and potential function of chemerin using a genetics approach.Design, setting, patients, and interventionPlasma chemerin levels were measured in subjects from the San Antonio Family Heart Study, a large family-based genetic epidemiological study including 1354 Mexican-American individuals. Individuals were randomly sampled without regard to phenotype or disease status.Main outcome measuresA genome-wide association analysis using 542,944 single-nucleotide polymorphisms in a subset of 523 of the same subjects was undertaken. The effect of chemerin on angiogenesis was measured using human endothelial cells and interstitial cells in coculture in a specially formulated medium.ResultsSerum chemerin levels were found to be highly heritable (h(2) = 0.25; P = 1.4 x 10(-9)). The single-nucleotide polymorphism showing strongest evidence of association (rs347344; P = 1.4 x 10(-6)) was located within the gene encoding epithelial growth factor-like repeats and discoidin I-like domains 3, which has a known role in angiogenesis. Functional angiogenesis assays in human endothelial cells confirmed that chemerin significantly mediated the formation of blood vessels to a similar extent as vascular endothelial growth factor.ConclusionHere we demonstrate for the first time that plasma chemerin levels are significantly heritable and identified a novel role for chemerin as a stimulator of angiogenesis.
Project description:Chemerin acts as a chemotactic factor for leukocyte populations expressing the G protein-coupled receptor CMKLR1 (ChemR23). It is also an adipocytokine involved in obesity and metabolic syndromes. Previous studies have demonstrated that chemerin promotes angiogenesis in vitro, although the precise mechanism has not been elucidated. In this study, we have investigated whether chemerin regulates angiogenic processes and validated the associated mechanisms. In this study, chemerin stimulated angiogenesis in mice, which was demonstrated using Matrigel plug implantation assay, mouse corneal models of angiogenesis, and ex vivo rat aortic ring assay. To explore the mechanisms by which chemerin induced angiogenesis, we examined the effects of chemerin in human umbilical vein endothelium cells (HUVECs). Chemerin stimulated the differentiation of HUVECs into capillary-like structures, promoted the proliferation of HUVECs, and functioned as a chemoattractant in migration assays. Chemerin induced the phosphorylation of Akt and p42/44 extracellular signal-regulated kinase (ERK) in HUVECs and chemerin promotes angiogenesis via Akt and ERK. SiRNA against the chemerin receptor CMKLR1 but not that against another chemerin receptor, CCRL2, completely inhibited the chemerin-induced migration and angiogenesis of HUVECs, which indicates that chemerin promotes the migration and angiogenic activities of HUVECs mainly through CMKLR1.
Project description:Chemerin is widely recognized as an adipokine, with diverse biological roles in cellular differentiation and metabolism, as well as a leukocyte chemoattractant. Research investigating the role of chemerin in the obesity-cancer relationship has provided evidence both for pro- and anti-cancer effects. The tumor-promoting effects of chemerin primarily involve direct effects on migration, invasion, and metastasis as well as growth and proliferation of cancer cells. Chemerin can also promote tumor growth via the recruitment of tumor-supporting mesenchymal stromal cells and stimulation of angiogenesis pathways in endothelial cells. In contrast, the majority of evidence supports that the tumor-suppressing effects of chemerin are immune-mediated and result in a shift from immunosuppressive to immunogenic cell populations within the tumor microenvironment. Systemic chemerin and chemerin produced within the tumor microenvironment may contribute to these effects via signaling through CMKLR1 (chemerin1), GPR1 (chemerin2), and CCLR2 on target cells. As such, inhibition or activation of chemerin signaling could be beneficial as a therapeutic approach depending on the type of cancer. Additional studies are required to determine if obesity influences cancer initiation or progression through increased adipose tissue production of chemerin and/or altered chemerin processing that leads to changes in chemerin signaling in the tumor microenvironment.
Project description:Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.
Project description:BackgroundAdipokine chemerin was proven to be associated with coronary artery disease (CAD), but its prognostic implications in CAD remain unclear.MethodsThis study consists of two parts, one is a basic study and the other is a clinical cohort study. First, we investigated the differential expression of six adipokines in the atherosclerotic mice model compared to mice with milder degrees of atherosclerosis and mice without atherosclerosis using microarray data. We then examined the potential of chemerin as a diagnostic and prognostic indicator in a CAD cohort. A total of 152 patients were enrolled in our study, including 77 patients with angiographically proven CAD and 75 control subjects without cardiovascular disease. Plasma adipokine chemerin levels were measured in all patients, and major adverse cardiovascular events (MACEs) were followed up, including ischemic stroke, non-fatal myocardial infarction, revascularization, and cardiovascular death.ResultsIn the aortas of atherosclerotic mice, chemerin expression was up-regulated compared to control mice. The plasma chemerin levels of CAD patients were higher than those of non-CAD patients (128.93 ± 37.06 vs. 109.85 ± 27.47 mmol/L, respectively, P < 0.001). High chemerin levels were an independent predictor of CAD (β = 2.702, 95% CI, 1.344-5.431, P = 0.001). We followed up with patients for a median duration of 5.5 years (3.9-5.6). The Kaplan-Meier curves showed that patients in the high chemerin group had a significantly higher risk of MACEs than the low chemerin group in patients with CAD (log-rank P = 0.003), not with non-CAD (Log-rank P = 0.120). Furthermore, Cox multivariate analysis revealed that high chemerin levels were an independent predictor of MACEs (HR 2.267; 95% CI, 1.139-4.515; P = 0.020). Finally, the cellular study showed that chemerin is predominantly expressed in PBMC-derived macrophages.ConclusionPlasma chemerin levels were increased in the CAD patients, and a high chemerin level increased the risk of MACEs in CAD patients.
Project description:BackgroundThe adipokine chemerin regulates adipogenesis and the metabolic function of both adipocytes and liver. Chemerin is elevated in preeclamptic women, and overexpression of chemerin in placental trophoblasts induces preeclampsia-like symptoms in mice. Preeclampsia is known to be accompanied by dyslipidemia, albeit via unknown mechanisms. Here, we hypothesized that chemerin might be a contributor to dyslipidemia.MethodsSerum lipid fractions as well as lipid-related genes and proteins were determined in pregnant mice with chemerin overexpression in placental trophoblasts and chemerin-overexpressing human trophoblasts. In addition, a phospholipidomics analysis was performed in chemerin-overexpressing trophoblasts.ResultsOverexpression of chemerin in trophoblasts increased the circulating and placental levels of cholesterol rather than triglycerides. It also increased the serum levels of lysophosphatidic acid, high-density lipoprotein cholesterol (HDL-C), and and low-density lipoprotein cholesterol (LDL-C), and induced placental lipid accumulation. Mechanistically, chemerin upregulated the levels of peroxisome proliferator-activated receptor g, fatty acid-binding protein 4, adiponectin, sterol regulatory element-binding protein 1 and 2, and the ratio of phosphorylated extracellular signal-regulated protein kinase (ERK)1/2 / total ERK1/2 in the placenta of mice and human trophoblasts. Furthermore, chemerin overexpression in human trophoblasts increased the production of lysophospholipids and phospholipids, particularly lysophosphatidylethanolamine.ConclusionsOverexpression of placental chemerin production disrupts trophoblast lipid metabolism, thereby potentially contributing to dyslipidemia in preeclampsia.
Project description:Chemerin is a multifunctional protein initially characterized in our laboratory as a chemoattractant factor for leukocyte populations. Its main functional receptor is CMKLR1. We identified previously chemerin as an anti-tumoral factor inhibiting the vascularization of tumor grafts. We show here that overexpression of bioactive chemerin in mice results in a reduction of the density of the retinal vascular network during its development and in adults. Chemerin did not affect vascular sprouting during the post-natal development of the network, but rather promoted endothelial cell apoptosis and vessel pruning. This phenotype was reversed to normal in CMKLR1-deficient mice, demonstrating the role of this receptor. Chemerin inhibited also neoangiogenesis in a model of pathological proliferative retinopathy, and in response to hind-limb ischemia. Mechanistically, PTEN and FOXO1 antagonists could almost completely restore the density of the retinal vasculature, suggesting the involvement of the PI3-kinase/AKT pathway in the chemerin-induced vessel regression process.
Project description:The adipokine chemerin causes arterial contraction and is implicated in blood pressure regulation, especially in obese subjects with elevated levels of circulating chemerin. Because chemerin is expressed in the perivascular adipose tissue (PVAT) that surrounds the sympathetic innervation of the blood vessel, we tested the hypothesis that chemerin (endogenous and exogenous) amplifies the sympathetic nervous system in mediating electrical field-stimulated (EFS) contraction. The superior mesenteric artery, with or without PVAT and with endothelium and sympathetic nerve intact, was mounted into isolated tissue baths and used for isometric contraction and stimulation. Immunohistochemistry validated a robust expression of chemerin in the PVAT surrounding the superior mesenteric artery. EFS (0.3-20 Hz) caused a frequency-dependent contraction in isolated arteries that was reduced by the chemerin receptor ChemR23 antagonist CCX832 alone (100 nM; with, but not without, PVAT), but not by the inactive congener CCX826 (100 nM). Exogenous chemerin-9 (1 μM)-amplified EFS-induced contraction in arteries (with and without PVAT) was blocked by CCX832 and the α-adrenergic receptor antagonist prazosin. CCX832 did not directly inhibit, nor did chemerin directly amplify, norepinephrine-induced contraction. Whole mount immunohistochemical experiments support colocalization of ChemR23 with the sympathetic nerve marker tyrosine hydroxylase in superior mesenteric PVAT and, to a lesser extent, in arteries and veins. These studies support the idea that exogenous chemerin modifies sympathetic nerve-mediated contraction through ChemR23 and that ChemR23 may be endogenously activated. This is significant because of the well-appreciated role of the sympathetic nervous system in blood pressure control.
Project description:Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense.
Project description:Endometrium, the lining of the uterus, changes dynamically in response to fluctuations in ovarian hormones. The proper endocrine environment regulates endometrial functions: menstruation and supporting pregnancy. Obesity is closely related to endometrial dysfunction, which seriously affects women's health and fertility, but the pathological mechanism is unknown. Chemerin is an adipokine involved in multiple biological events such as immunity and metabolism by acting on its functional receptors. This study aimed to characterize the effects of chemerin on human endometrial epithelial cells by RNA-Seq.