Ontology highlight
ABSTRACT: Background
Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority.Objective
The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development.Methods
The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells.Results
As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly.Conclusions
Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment.
SUBMITTER: Oliveira AD
PROVIDER: S-EPMC5424126 | biostudies-literature | 2017 Apr
REPOSITORIES: biostudies-literature
Oliveira Allisson Dantas AD Prats Clara C Espasa Mateu M Zarzuela Serrat Francesc F Montañola Sales Cristina C Silgado Aroa A Codina Daniel Lopez DL Arruda Mercia Eliane ME I Prat Jordi Gomez JG Albuquerque Jones J
JMIR research protocols 20170425 4
<h4>Background</h4>Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority.<h4>Objective</h4>The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood sa ...[more]