Ontology highlight
ABSTRACT: Background
Mungbean (Vigna radiata L. Wilczek) is an economically important legume of high nutritional value, however, its cultivation is limited by susceptibility to chilling. Varieties NM94 and VC1973A, with differential susceptibility to stress, serve as good materials for uncovering how they differ in chilling tolerance. This study aimed to identify the ultrastructural, physiological and molecular changes to provide new insights on the differential susceptibility to chilling between varieties VC1973A and NM94.Results
Chilling stress caused a greater reduction in relative growth rate, a more significant decrease in maximum photochemical efficiency of PSII and DPPH scavenging activity and more-pronounced ultrastructural changes in VC1973A than in NM94 seedlings. Comparative analyses of transcriptional profiles in NM94 and VC1973A revealed that the higher expression of chilling regulated genes (CORs) in NM94. The transcript levels of lipid transfer protein (LTP), dehydrin (DHN) and plant defensin (PDF) in NM94 seedlings after 72 h at 4 °C was higher than that in its parental lines VC1973A, 6601 and VC2768A.Conclusions
Our results suggested that LTP, DHN and PDF may mediate chilling tolerance in NM94 seedlings.
SUBMITTER: Chen LR
PROVIDER: S-EPMC5432936 | biostudies-literature | 2017 Dec
REPOSITORIES: biostudies-literature
Chen Li-Ru LR Ko Chia-Yun CY Folk William R WR Lin Tsai-Yun TY
Botanical studies 20170109 1
<h4>Background</h4>Mungbean (Vigna radiata L. Wilczek) is an economically important legume of high nutritional value, however, its cultivation is limited by susceptibility to chilling. Varieties NM94 and VC1973A, with differential susceptibility to stress, serve as good materials for uncovering how they differ in chilling tolerance. This study aimed to identify the ultrastructural, physiological and molecular changes to provide new insights on the differential susceptibility to chilling between ...[more]