Project description:Nearly 50% of patients with de novo acute myeloid leukemia (AML) harbor an apparently normal karyotype (NK) by conventional cytogenetic techniques showing a very heterogeneous prognosis. This could be related to the presence of cryptic cytogenetic abnormalities (CCA) not detectable by conventional methods. The study of copy number alterations (CNA) and loss of heterozygozity (LOH) in hematological malignancies is possible using a high resolution SNP-array. Recently, in clinical practice the karyotype study has been complemented with the identification of point mutations in an increasing number of genes. We analyzed 252 de novo NK-AML patients from Hospital La Fe (n = 44) and from previously reported cohorts (n = 208) to identify CCA by SNP-array, and to integrate the analysis of CCA with molecular alterations detected by Next-Generation-sequencing. CCA were detected in 58% of patients. In addition, 49% of them harbored CNA or LOH and point mutations, simultaneously. Patients were grouped in 3 sets by their abnormalities: patients carrying several CCA simultaneously, patients with mutations in FLT3, NPM1 and/or DNMT3A and patients with an amalgam of mutations. We found a negative correlation between the number of CCA and the outcome of the patients. This study outlines that CCA are present in up to 50% of NK-AML patients and have a negative impact on the outcome. CCA may contribute to the heterogeneous prognosis.
Project description:The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.
Project description:BackgroundMany mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear.MethodsWe analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis.ResultsAML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories.ConclusionsWe identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).
Project description:BackgroundAcute myeloid leukemia (AML) is a common hematopoietic malignancy that has a high relapse rate, and the number of regulatory T cells (Tregs) in AML patients is significantly increased. The aim of this study was to clarify the role of Tregs in the immune escape of acute myeloid leukemia.MethodsThe frequencies of Tregs and the expression of PD-1, CXCR4 and CXCR7 were examined by flow cytometry. The expression of CTLA-4 and GITR was tested by MFI. Chemotaxis assays were performed to evaluate Treg migration. The concentrations of SDF-1α, IFN-γ and TNF-α were examined by ELISA. Coculture and crisscross coculture experiments were performed to examine Treg proliferation and apoptosis and the effect of regulatory B cells (Breg) conversion.ResultsThe frequencies of Tregs in peripheral blood and bone marrow in AML patients were increased compared with those in healthy participants. AML Tregs had robust migration towards bone marrow due to increased expression of CXCR4. AML Treg-mediated immunosuppression of T cells was achieved through proliferation inhibition, apoptosis promotion and suppression of IFN-γ production in CD4+CD25- T cells. AML Bregs induced the conversion of CD4+CD25-T cells to Tregs.ConclusionIn AML patients, the Breg conversion effect and robust CXCR4-induced migration led to Treg enrichment in bone marrow. AML Tregs downregulated the function of CD4+CD25- T cells, contributing to immune escape.
Project description:The therapeutic strategies for acute myeloid leukemia (AML) patients ineligible for remission induction chemotherapy have been improving in the past decade. Therefore, it is important to define ineligibility for remission induction chemotherapy. We retrospectively assessed 153 consecutive adult de novo AML patients undergoing remission induction chemotherapy and defined early mortality as death within the first 60 days of treatment. The 153 patients were stratified into the early mortality group (n = 29) and the non-early mortality group (n = 124). We identified potential factors to which early mortality could be attributed, investigated the cumulative incidence of early mortality for each aspect, and quantified the elements. The early mortality rate in our study cohort was 19.0%. Age ≥ 65 years (odds ratio (OR): 3.15; 95% confidence interval (CI): 1.05-9.44; p = 0.041), Eastern Cooperative Oncology Group performance status ≥ 2 (OR: 4.87; 95% CI: 1.77-13.41; p = 0.002), and lactate dehydrogenase ≥ 1000 IU/L (OR: 4.20; 95% CI: 1.57-11.23; p = 0.004) were the risk factors that substantially increased early mortality in AML patients. Patients with two risk factors had a significantly higher early mortality rate than those with one risk factor (68.8% vs. 20.0%; p < 0.001) or no risk factors (68.8% vs. 9.2%; p < 0.001). In conclusion, older age, poor clinical performance, and a high tumor burden were risks for early mortality in AML patients receiving remission induction chemotherapy. Patients harboring at least two of these three factors should be more carefully assessed for remission induction chemotherapy.
Project description:Tandem duplications (TDs) of the UBTF gene have been recently described as a recurrent alteration in pediatric acute myeloid leukemia (AML). Here, by screening 1946 newly diagnosed adult AML, we found that UBTF-TDs occur in about 3% of patients aged 18-60 years, in a mutually exclusive pattern with other known AML subtype-defining alterations. The characteristics of 59 adults with UBTF-TD AML included young age (median 37 years), low bone marrow (BM) blast infiltration (median 25%), and high rates of WT1 mutations (61%), FLT3-ITDs (51%) and trisomy 8 (29%). BM morphology frequently demonstrates dysmyelopoiesis albeit modulated by the co-occurrence of FLT3-ITD. UBTF-TD patients have lower complete remission (CR) rates (57% after 1 course and 76% after 2 courses of intensive chemotherapy [ICT]) than UBTF-wild-type patients. In patients enrolled in the ALFA-0702 study (n = 614 patients including 21 with UBTF-TD AML), the 3-year disease-free survival (DFS) and overall survival of UBTF-TD patients were 42.9% (95%CI: 23.4-78.5%) and 57.1% (95%CI: 39.5-82.8%) and did not significantly differ from those of ELN 2022 intermediate/adverse risk patients. Finally, the study of paired diagnosis and relapsed/refractory AML samples suggests that WT1-mutated clones are frequently selected under ICT. This study supports the recognition of UBTF-TD AML as a new AML entity in adults.
Project description:Mutations in splicing factor (SF) genes are frequently detected in myelodysplastic syndrome, but the prognostic relevance of these genes mutations in acute myeloid leukemia (AML) remains unclear. In this study, we investigated mutations of three SF genes, SF3B1, U2AF1 and SRSF2, by Sanger sequencing in 500 patients with de novo AML and analysed their clinical relevance. SF mutations were identified in 10.8% of total cohort and 13.2% of those with intermediate-risk cytogenetics. SF mutations were closely associated with RUNX1, ASXL1, IDH2 and TET2 mutations. SF-mutated AML patients had a significantly lower complete remission rate and shorter disease-free survival (DFS) and overall survival (OS) than those without the mutation. Multivariate analysis demonstrated that SFmutation was an independent poor prognostic factor for DFS and OS. A scoring system incorporating SF mutation and ten other prognostic factors was proved very useful to risk-stratify AML patients. Sequential study of paired samples showed that SF mutations were stable during AML evolution. In conclusion, SF mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression. These mutations may be potential targets for novel treatment and biomarkers for disease monitoring in AML.