Unknown

Dataset Information

0

Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii.


ABSTRACT: Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.

SUBMITTER: Williams-Rhaesa AM 

PROVIDER: S-EPMC5494628 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii.

Williams-Rhaesa Amanda M AM   Poole Farris L FL   Dinsmore Jessica T JT   Lipscomb Gina L GL   Rubinstein Gabriel M GM   Scott Israel M IM   Conway Jonathan M JM   Lee Laura L LL   Khatibi Piyum A PA   Kelly Robert M RM   Adams Michael W W MWW  

Applied and environmental microbiology 20170630 14


<i>Caldicellulosiruptor bescii</i> is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of <i>C. bescii</i> strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis g  ...[more]

Similar Datasets

2008-04-15 | GSE11153 | GEO
2008-04-15 | E-GEOD-11153 | biostudies-arrayexpress
| S-EPMC2576683 | biostudies-literature
2010-02-15 | GSE18856 | GEO
2010-05-14 | E-GEOD-18856 | biostudies-arrayexpress