Unknown

Dataset Information

0

Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.


ABSTRACT: Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We defined the HNRNPL-bound RNA landscape by RNA immunoprecipitation coupled with next-generation sequencing and linked these RBP-RNA interactions to changes in RNA processing. HNRNPL directly regulates the alternative splicing of a set of RNAs, including those encoding the androgen receptor, the key lineage-specific prostate cancer oncogene. HNRNPL also regulates circular RNA formation via back splicing. Importantly, both HNRNPL and its RNA targets are aberrantly expressed in human prostate tumors, supporting their clinical relevance. Collectively, our data reveal HNRNPL and its RNA clients as players in prostate cancer growth and potential therapeutic targets.

SUBMITTER: Fei T 

PROVIDER: S-EPMC5495225 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.

Fei Teng T   Chen Yiwen Y   Xiao Tengfei T   Li Wei W   Cato Laura L   Zhang Peng P   Cotter Maura B MB   Bowden Michaela M   Lis Rosina T RT   Zhao Shuang G SG   Wu Qiu Q   Feng Felix Y FY   Loda Massimo M   He Housheng Hansen HH   Liu X Shirley XS   Brown Myles M  

Proceedings of the National Academy of Sciences of the United States of America 20170613 26


Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We defined the HNRNPL-bound RNA landscape by RNA immunop  ...[more]

Similar Datasets

| S-EPMC6952391 | biostudies-literature
| S-EPMC5511375 | biostudies-literature
| S-EPMC9331787 | biostudies-literature
| S-EPMC1180806 | biostudies-other
2019-11-30 | GSE141171 | GEO
| S-EPMC6348303 | biostudies-literature
| S-EPMC5017925 | biostudies-literature