Ontology highlight
ABSTRACT: Statement of significance
Pine bark extract is a renewable source of structurally diverse proanthocyanidins (PACs), multifunctional compounds whose interaction with collagen can be tailored to specific purposes by enrichment of selected PACs from the complex mixture. Oligomeric PACs were enriched from the extract and were shown here to sustain desired tissue modification and were thus assessed for cellular response in a model of the dentin-pulp interface. This model was developed to mimic leaching of potentially reactive compounds into pulp tissue. Dental pulp cells exposed to PAC-treated dentin showed increased proliferation and expression of genes necessary for extracellular matrix deposition and biomineralization, processes crucial for forming new dentin. Thus, collagen-interactive PACs may also enhance tissue regeneration and have broad impact in tissue engineering.
SUBMITTER: Kulakowski D
PROVIDER: S-EPMC5504470 | biostudies-literature | 2017 Jun
REPOSITORIES: biostudies-literature

Acta biomaterialia 20170329
Proanthocyanidins (PACs) are plant-derived, multifunctional compounds that possess high interactivity with extracellular matrix (ECM) components. The documented affinity of PACs for type-I collagen is directly correlated with their structural features and degree of polymerization. In this investigation, centrifugal partition chromatography (CPC) was used to sequentially deplete less active monomeric and polymeric PACs from a crude Pinus massoniana bark extract to create refined mixtures enriched ...[more]