Project description:Specialized carnivory is relatively uncommon across mammals, and bats constitute one of the few groups in which this diet has evolved multiple times. While size and morphological adaptations for carnivory have been identified in other taxa, it is unclear what phenotypic traits characterize the relatively recent evolution of carnivory in bats. To address this gap, we apply geometric morphometric and phylogenetic comparative analyses to elucidate which characters are associated with ecological divergence of carnivorous bats from insectivorous ancestors, and if there is morphological convergence among independent origins of carnivory within bats, and with other carnivorous mammals. We find that carnivorous bats are larger and converged to occupy a subset of the insectivorous morphospace, characterized by skull shapes that enhance bite force at relatively wide gapes. Piscivorous bats are morphologically distinct, with cranial shapes that enable high bite force at narrow gapes, which is necessary for processing fish prey. All animal-eating species exhibit positive allometry in rostrum elongation with respect to skull size, which could allow larger bats to take relatively larger prey. The skull shapes of carnivorous bats share similarities with generalized carnivorans, but tend to be more suited for increased bite force production at the expense of gape, when compared with specialized carnivorans.
Project description:Body size governs predator-prey interactions, which in turn structure populations, communities, and food webs. Understanding predator-prey size relationships is valuable from a theoretical perspective, in basic research, and for management applications. However, predator-prey size data are limited and costly to acquire. We quantified predator-prey total length and mass relationships for several freshwater piscivorous taxa: crappie (Pomoxis spp.), largemouth bass (Micropterus salmoides), muskellunge (Esox masquinongy), northern pike (Esox lucius), rock bass (Ambloplites rupestris), smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). The range of prey total lengths increased with predator total length. The median and maximum ingested prey total length varied with predator taxon and length, but generally ranged from 10-20% and 32-46% of predator total length, respectively. Predators tended to consume larger fusiform prey than laterally compressed prey. With the exception of large muskellunge, predators most commonly consumed prey between 16 and 73 mm. A sensitivity analysis indicated estimates can be very accurate at sample sizes greater than 1,000 diet items and fairly accurate at sample sizes greater than 100. However, sample sizes less than 50 should be evaluated with caution. Furthermore, median log10 predator-prey body mass ratios ranged from 1.9-2.5, nearly 50% lower than values previously reported for freshwater fishes. Managers, researchers, and modelers could use our findings as a tool for numerous predator-prey evaluations from stocking size optimization to individual-based bioenergetics analyses identifying prey size structure. To this end, we have developed a web-based user interface to maximize the utility of our models that can be found at www.LakeEcologyLab.org/pred_prey.
Project description:Transcriptome comparison of 15 lines representing the University of Minnesota six-rowed malting breeding program at two time points of the malting process: 'out of steep' and '3 days of germination'. Three replicates of each genotype and time point were accomplished. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Maria Muñoz-Amatriain. The equivalent experiment is BB91 at PLEXdb.]
Project description:In this article, the first explicit, theory-based comparison of 2-choice and go/no-go variants of 3 experimental tasks is presented. Prior research has questioned whether the underlying core-information processing is different for the 2 variants of a task or whether they differ mostly in response demands. The authors examined 4 different diffusion models for the go/no-go variant of each task along with a standard diffusion model for the 2-choice variant (R. Ratcliff, 1978). The 2-choice and the go/no-go models were fit to data from 4 lexical decision experiments, 1 numerosity discrimination experiment, and 1 recognition memory experiment, each with 2-choice and go/no-go variants. The models that assumed an implicit decision criterion for no-go responses produced better fits than models that did not. The best model was one in which only response criteria and the nondecisional components of processing changed between the 2 variants, supporting the view that the core information on which decisions are based is not different between them.