Project description:Characterization of life processes at the molecular level requires structural details of protein-protein interactions (PPIs). The number of experimentally determined protein structures accounts only for a fraction of known proteins. This gap has to be bridged by modeling, typically using experimentally determined structures as templates to model related proteins. The fraction of experimentally determined PPI structures is even smaller than that for the individual proteins, due to a larger number of interactions than the number of individual proteins, and a greater difficulty of crystallizing protein-protein complexes. The approaches to structural modeling of PPI (docking) often have to rely on modeled structures of the interactors, especially in the case of large PPI networks. Structures of modeled proteins are typically less accurate than the ones determined by X-ray crystallography or nuclear magnetic resonance. Thus the utility of approaches to dock these structures should be assessed by thorough benchmarking, specifically designed for protein models. To be credible, such benchmarking has to be based on carefully curated sets of structures with levels of distortion typical for modeled proteins. This article presents such a suite of models built for the benchmark set of the X-ray structures from the Dockground resource (http://dockground.bioinformatics.ku.edu) by a combination of homology modeling and Nudged Elastic Band method. For each monomer, six models were generated with predefined C(?) root mean square deviation from the native structure (1, 2, …, 6 Å). The sets and the accompanying data provide a comprehensive resource for the development of docking methodology for modeled proteins.
Project description:Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based treatment design is validation of model-based estimates of in vivo contact and muscle forces. This paper introduces an annual "Grand Challenge Competition to Predict In Vivo Knee Loads" based on a series of comprehensive publicly available in vivo data sets for evaluating musculoskeletal model predictions of contact and muscle forces in the knee. The data sets come from patients implanted with force-measuring tibial prostheses. Following a historical review of musculoskeletal modeling methods used for estimating knee muscle and contact forces, we describe the first two data sets used for the first two competitions and summarize four subsequent data sets to be used for future competitions. These data sets include tibial contact force, video motion, ground reaction, muscle EMG, muscle strength, static and dynamic imaging, and implant geometry data. Competition participants create musculoskeletal models to predict tibial contact forces without having access to the corresponding in vivo measurements. These blinded predictions provide an unbiased evaluation of the capabilities and limitations of musculoskeletal modeling methods. The paper concludes with a discussion of how these unique data sets can be used by the musculoskeletal modeling research community to improve the estimation of in vivo muscle and contact forces and ultimately to help make musculoskeletal models clinically useful.
Project description:The discovery of new drugs is a time consuming and expensive process. Methods such as virtual screening, which can filter out ineffective compounds from drug libraries prior to expensive experimental study, have become popular research topics. As the computational drug discovery community has grown, in order to benchmark the various advances in methodology, organizations such as the Drug Design Data Resource have begun hosting blinded grand challenges seeking to identify the best methods for ligand pose-prediction, ligand affinity ranking, and free energy calculations. Such open challenges offer a unique opportunity for researchers to partner with junior students (e.g., high school and undergraduate) to validate basic yet fundamental hypotheses considered to be uninteresting to domain experts. Here, we, a group of high school-aged students and their mentors, present the results of our participation in Grand Challenge 4 where we predicted ligand affinity rankings for the Cathepsin S protease, an important protein target for autoimmune diseases. To investigate the effect of incorporating receptor dynamics on ligand affinity rankings, we employed the Relaxed Complex Scheme, a molecular docking method paired with molecular dynamics-generated receptor conformations. We found that Cathepsin S is a difficult target for molecular docking and we explore some advanced methods such as distance-restrained docking to try to improve the correlation with experiments. This project has exemplified the capabilities of high school students when supported with a rigorous curriculum, and demonstrates the value of community-driven competitions for beginners in computational drug discovery.
Project description:We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4). This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well as affinity ranking and free energy estimation for Cathepsin S (CatS). We have developed advanced mathematics, namely differential geometry, algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional physical/chemical interactions into scalable low-dimensional rotational and translational invariant representations. These representations are integrated with deep learning models, such as generative adversarial networks (GAN) and convolutional neural networks (CNN) for pose prediction and energy evaluation, respectively. Overall, our MathDL models achieved the top place in pose prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest Spearman correlation coefficient on the affinity ranking of 460 CatS compounds, and the smallest centered root mean square error on the free energy set of 39 CatS molecules. It is worthy to mention that our method on docking pose predictions has significantly improved from our previous ones.
Project description:PurposeLung stereotactic ablative body radiotherapy (SABR) is a radiation therapy success story with level 1 evidence demonstrating its efficacy. To provide real-time respiratory motion management for lung SABR, several commercial and preclinical markerless lung target tracking (MLTT) approaches have been developed. However, these approaches have yet to be benchmarked using a common measurement methodology. This knowledge gap motivated the MArkerless lung target Tracking CHallenge (MATCH). The aim was to localize lung targets accurately and precisely in a retrospective in silico study and a prospective experimental study.MethodsMATCH was an American Association of Physicists in Medicine sponsored Grand Challenge. Common materials for the in silico and experimental studies were the experiment setup including an anthropomorphic thorax phantom with two targets within the lungs, and a lung SABR planning protocol. The phantom was moved rigidly with patient-measured lung target motion traces, which also acted as ground truth motion. In the retrospective in silico study a volumetric modulated arc therapy treatment was simulated and a dataset consisting of treatment planning data and intra-treatment kilovoltage (kV) and megavoltage (MV) images for four blinded lung motion traces was provided to the participants. The participants used their MLTT approach to localize the moving target based on the dataset. In the experimental study, the participants received the phantom experiment setup and five patient-measured lung motion traces. The participants used their MLTT approach to localize the moving target during an experimental SABR phantom treatment. The challenge was open to any participant, and participants could complete either one or both parts of the challenge. For both the in silico and experimental studies the MLTT results were analyzed and ranked using the prospectively defined metric of the percentage of the tracked target position being within 2 mm of the ground truth.ResultsA total of 30 institutions registered and 15 result submissions were received, four for the in silico study and 11 for the experimental study. The participating MLTT approaches were: Accuray CyberKnife (2), Accuray Radixact (2), BrainLab Vero, C-RAD, and preclinical MLTT (5) on a conventional linear accelerator (Varian TrueBeam). For the in silico study the percentage of the 3D tracking error within 2 mm ranged from 50% to 92%. For the experimental study, the percentage of the 3D tracking error within 2 mm ranged from 39% to 96%.ConclusionsA common methodology for measuring the accuracy of MLTT approaches has been developed and used to benchmark preclinical and commercial approaches retrospectively and prospectively. Several MLTT approaches were able to track the target with sub-millimeter accuracy and precision. The study outcome paves the way for broader clinical implementation of MLTT. MATCH is live, with datasets and analysis software being available online at https://www.aapm.org/GrandChallenge/MATCH/ to support future research.
Project description:The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.
Project description:China's increasingly urbanized and wealthy population is driving a growing and changing demand for food, which might not be met without significant increase in agricultural productivity and sustainable use of natural resources. Given the past relationship between lack of access to affordable food and political instability, food security has to be given a high priority on national political agendas in the context of globalization. The drive for increased food production has had a significant impact on the environment, and the deterioration in ecosystem quality due to historic and current levels of pollution will potentially compromise the food production system in China. We discuss the grand challenges of not only producing more food but also producing it sustainably and without environmental degradation. In addressing these challenges, food production should be considered as part of an environmental system (soil, air, water, and biodiversity) and not independent from it. It is imperative that new ways of meeting the demand for food are developed while safeguarding the natural resources upon which food production is based. We present a holistic approach to both science and policy to ensure future food security while embracing the ambition of achieving environmental sustainability in China. It is a unique opportunity for China to be a role model as a new global player, especially for other emerging economies.