Unknown

Dataset Information

0

High-frequency microrheology reveals cytoskeleton dynamics in living cells.


ABSTRACT: Living cells are viscoelastic materials, with the elastic response dominating at long timescales (?1 ms)1. At shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce2. Here, we develop high-frequency microrheology (HF-MR) to probe the viscoelastic response of living cells from 1Hz to 100 kHz. We report the viscoelasticity of different cell types and upon cytoskeletal drug treatments. At previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequency, providing a univocal mechanical fingerprint. Microrheology over a wide dynamic range up to the frequency of action of the molecular components provides a mechanistic understanding of cell mechanics.

SUBMITTER: Rigato A 

PROVIDER: S-EPMC5540170 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-frequency microrheology reveals cytoskeleton dynamics in living cells.

Rigato Annafrancesca A   Miyagi Atsushi A   Scheuring Simon S   Rico Felix F  

Nature physics 20170501 8


Living cells are viscoelastic materials, with the elastic response dominating at long timescales (≳1 ms)1. At shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce2. Here, we develop high-frequency microrheology (HF-MR) to probe the viscoelastic response of living cells from 1Hz to 100 kHz. We report the viscoelasticity of different cell types and upon cytoskeletal drug treatme  ...[more]

Similar Datasets

| S-EPMC6642418 | biostudies-literature
| S-EPMC5621978 | biostudies-literature
| S-EPMC3508509 | biostudies-literature
| S-EPMC3136503 | biostudies-literature
| S-EPMC7817219 | biostudies-literature
| S-EPMC6057935 | biostudies-literature
| S-EPMC8454903 | biostudies-literature