Project description:The common single nucleotide polymorphism (SNP) rs1360780 (C/T) of the FK506 Binding Protein 5 (FKBP5) gene has been reported to be associated with an altered response of the hypothalamic-pituitary-adrenal (HPA) axis and the development of stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD). In the present study, we examined whether this SNP is associated with cognitive function in a non-clinical population. The full versions of the Wechsler Memory Scale-Revised and Wechsler Adult Intelligence Scale-Revised were administered to 742 and 627 Japanese individuals, respectively, followed by genotyping of rs1360780 by the TaqMan 5'-exonuclease allelic discrimination assay. For both cognitive tests, we found significantly poorer attention/concentration (working memory) in aged (>50 years old) individuals carrying the T allele compared with their counterparts. This finding accords with an altered HPA axis and vulnerability to stress-related psychiatric disorders.
Project description:Extensive research has demonstrated that rs1360780, a common single nucleotide polymorphism within the FKBP5 gene, interacts with early-life stress in predicting psychopathology. Previous results suggest that carriers of the TT genotype of rs1360780 who were exposed to child abuse show differences in structure and functional activation of emotion-processing brain areas belonging to the salience network. Extending these findings on intermediate phenotypes of psychopathology, we examined if the interaction between rs1360780 and child abuse predicts resting-state functional connectivity (rsFC) between the amygdala and other areas of the salience network. We analyzed data of young European adults from the general population (N = 774; mean age = 18.76 years) who took part in the IMAGEN study. In the absence of main effects of genotype and abuse, a significant interaction effect was observed for rsFC between the right centromedial amygdala and right posterior insula (p < .025, FWE-corrected), which was driven by stronger rsFC in TT allele carriers with a history of abuse. Our results suggest that the TT genotype of rs1360780 may render individuals with a history of abuse more vulnerable to functional changes in communication between brain areas processing emotions and bodily sensations, which could underlie or increase the risk for psychopathology.
Project description:IntroductionFunctional magnetic resonance imaging (fMRI) has shown that aging disturbs healthy brain organization and functional connectivity. However, how this age-induced alteration impacts dynamic brain function interaction has not yet been fully investigated. Dynamic function network connectivity (DFNC) analysis can produce a brain representation based on the time-varying network connectivity changes, which can be further used to study the brain aging mechanism for people at different age stages.MethodThis presented investigation examined the dynamic functional connectivity representation and its relationship with brain age for people at an elderly stage as well as in early adulthood. Specifically, the resting-state fMRI data from the University of North Carolina cohort of 34 young adults and 28 elderly participants were fed into a DFNC analysis pipeline. This DFNC pipeline forms an integrated dynamic functional connectivity (FC) analysis framework, which consists of brain functional network parcellation, dynamic FC feature extraction, and FC dynamics examination.ResultsThe statistical analysis demonstrates that extensive dynamic connection changes in the elderly concerning the transient brain state and the method of functional interaction in the brain. In addition, various machine learning algorithms have been developed to verify the ability of dynamic FC features to distinguish the age stage. The fraction time of DFNC states has the highest performance, which can achieve a classification accuracy of over 88% by a decision tree.DiscussionThe results proved there are dynamic FC alterations in the elderly, and the alteration was found to be correlated with mnemonic discrimination ability and could have an impact on the balance of functional integration and segregation.
Project description:Behavioral consequences of a brain insult represent an interaction between the injury and the capacity of the rest of the brain to adapt to it. We provide experimental support for the notion that genetic factors play a critical role in such adaptation. We induced a controlled brain disruption using repetitive transcranial magnetic stimulation (rTMS) and show that APOE status determines its impact on distributed brain networks as assessed by functional MRI (fMRI).Twenty non-demented elders exhibiting mild memory dysfunction underwent two fMRI studies during face-name encoding tasks (before and after rTMS). Baseline task performance was associated with activation of a network of brain regions in prefrontal, parietal, medial temporal and visual associative areas. APOE ?4 bearers exhibited this pattern in two separate independent components, whereas ?4-non carriers presented a single partially overlapping network. Following rTMS all subjects showed slight ameliorations in memory performance, regardless of APOE status. However, after rTMS APOE ?4-carriers showed significant changes in brain network activation, expressing strikingly similar spatial configuration as the one observed in the non-carrier group prior to stimulation. Similarly, activity in areas of the default-mode network (DMN) was found in a single component among the ?4-non bearers, whereas among carriers it appeared disaggregated in three distinct spatiotemporal components that changed to an integrated single component after rTMS.Our findings demonstrate that genetic background play a fundamental role in the brain responses to focal insults, conditioning expression of distinct brain networks to sustain similar cognitive performance.
Project description:UnlabelledRecent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention.Significance statementRecent work identified a promising neuromarker of sustained attention based on whole-brain functional connectivity networks. To investigate the causal role of these networks in attention, we examined their response to a dose of methylphenidate, a common and effective treatment for attention-deficit/hyperactivity disorder, in healthy adults. As predicted, individuals on methylphenidate showed connectivity signatures of better sustained attention: higher high-attention and lower low-attention network strength than controls. These results suggest that methylphenidate acts by modulating strength in functional brain networks related to attention, and that changing whole-brain connectivity patterns may improve attention.
Project description:Investigating the effects of gene-environment interactions (G × E) with regard to brain structure may help to elucidate the putative mechanisms associated with psychiatric risk. rs1360780 (C/T) is a functional single-nucleotide polymorphism (SNP) in the gene encoding FK506-binding protein 5 (FKBP5), which is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis stress responses. The minor (T) allele of FKBP5 is considered a risk allele for stress-related disorders, due to the overproduction of FKBP5, which results in impaired communication of stress signals with the HPA axis. Previous studies have reported that interactions between childhood maltreatment and the rs1360780 genotype affect structures in subcortical areas of the brain. However, it is unclear how this SNP modulates the association between non-adverse environments and brain structure. In this study, we examined the interactive effect of the rs1360780 genotype and maternal acceptance on the regional gray matter volume (rGMV) in 202 Japanese children. Maternal acceptance was assessed using a Japanese psychological questionnaire for mothers. Whole-brain multiple regression analysis using voxel-based morphometry showed a significant positive association between maternal acceptance and rGMV in the left thalamus of T-allele carriers, while a significant negative association was found in C/C homozygotes. Post-hoc analysis revealed that at or below the 70th percentiles of maternal acceptance, the T-allele carriers had a reduced thalamic rGMV compared with that of C/C homozygotes. Thus, our investigation indicated that the effect of the maternal acceptance level on brain development was different, depending on the rs1360780 genotype. Importantly, we found that the differences in brain structure between the T-allele carriers and C/C homozygotes at low to moderate levels of maternal acceptance, which is not equivalent to maltreatment. The present study contributes to the G × E research by highlighting the necessity to investigate the role of non-adverse environmental factors.
Project description:Genome wide association studies (GWAS) have identified and validated the association of the PICALM genotype with Alzheimer's disease (AD). The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain functional connectivity in non-demented subjects remains largely unknown. We examined the association of the PICALM rs3851179 genotype with the characteristics of lagged linear connectivity (LLC) of resting EEG sources in 104 non-demented adults younger than 60 years of age. The EEG analysis was performed using exact low-resolution brain electromagnetic tomography (eLORETA) freeware (Pascual-Marqui et al., 2011). We found that the carriers of the A PICALM allele (PICALM AA and AG genotypes) had higher widespread interhemispheric LLC of alpha sources compared to the carriers of the GG PICALM allele. An exploratory correlation analysis showed a moderate positive association between the alpha LLC interhemispheric characteristics and the corpus callosum size and between the alpha interhemispheric LLC characteristics and the Luria word memory scores. These results suggest that the PICALM rs3851179 A allele provides protection against cognitive decline by facilitating neurophysiological reserve capacities in non-demented adults. In contrast, lower functional connectivity in carriers of the AD risk variant, PICALM GG, suggests early functional alterations in alpha rhythm networks.
Project description:BackgroundSocial engagement has beneficial effects during cognitive aging. Large-scale cognitive brain network functions are implicated in both social behaviors and cognition.ObjectiveWe evaluated associations between functional connectivity (FC) of large-scale brain cognitive networks and social engagement, characterized by self-reported social network size and contact frequency. We subsequently tested large-scale brain network FC as a potential mediator of the beneficial relationship between social engagement and cognitive performance.Methods112 older adults (70.7±7.3 years, range 54.6-89.7; 84 women) completed the Lubben Social Network Scale 6 (LSNS-6), National Alzheimer's Coordinating Center (NACC) Uniform Data Set 3 (UDS-3) cognitive battery, and resting state fMRI. We completed seed-based correlational analysis in the default mode and salience networks. Significant associations between social engagement scores and cognitive performance, as well as between social engagement and FC of brain networks, informed the construction of mediation models.ResultsSocial engagement was significantly associated with executive function and global cognition, with greater social engagement associated with better cognitive performance. Social engagement was significantly associated with salience network FC, with greater social engagement associated with higher connectivity. Salience network FC partially mediated associations between social engagement and both executive function and global cognition.ConclusionsOur results suggest that the salience network is a key mediator of the beneficial relationship between social engagement and cognition in older adults.
Project description:Olfactory hedonic evaluation is the primary dimension of olfactory perception and thus central to our sense of smell. It involves complex interactions between brain regions associated with sensory, affective and reward processing. Despite a recent increase in interest, several aspects of olfactory hedonic evaluation remain ambiguous: uncertainty surrounds the communication between, and interaction among, brain areas during hedonic evaluation of olfactory stimuli with different levels of pleasantness, as well as the corresponding supporting oscillatory mechanisms. In our study we investigated changes in functional interactions among brain areas in response to odor stimuli using electroencephalography (EEG). To this goal, functional connectivity networks were estimated based on phase synchronization between EEG signals using the weighted phase lag index (wPLI). Graph theoretic metrics were subsequently used to quantify the resulting changes in functional connectivity of relevant brain regions involved in olfactory hedonic evaluation. Our results indicate that odor stimuli of different hedonic values evoke significantly different interaction patterns among brain regions within the olfactory cortex, as well as in the anterior cingulate and orbitofrontal cortices. Furthermore, significant hemispheric laterality effects have been observed in the prefrontal and anterior cingulate cortices, specifically in the beta ((13-30) Hz) and gamma ((30-40) Hz) frequency bands.
Project description:BackgroundThe integrity of connections between the hippocampus and the anterior cingulate cortex (ACC) is critical for adaptive cognitive and emotional processing; these connections may be compromised in posttraumatic stress disorder (PTSD). However, there is a lack of PTSD research that combines structural and functional connectivity data, and no studies have examined whether abnormal ACC-hippocampal connectivity is associated with genetic variability, particularly for polymorphisms of a gene that has been previously associated with PTSD, FKBP5. This was the goal of the present study.MethodsFifty-four women with and without PTSD underwent diffusion tensor imaging and resting-state MRI. Probabilistic tractography was used to examine ACC-hippocampal structural connectivity; mean fractional anisotropy (FA) values were extracted from connectivity streamlines, which represent the cingulum bundle. Genotype data were collected for a single nucleotide polymorphism (SNP) of FKBP5, rs1360780.ResultsParticipants with PTSD demonstrated poorer structural connectivity (lower cingulum FA) compared to traumatized controls (F1, 50 = 6.77, P < .05). An interaction of FKBP5 genotype and diagnostic group was also observed (F1, 37 = 4.52, P = .04), indicating lower cingulum FA in carriers of two risk alleles for this SNP, compared to other diagnostic and genotype groups. Carriers of two FKBP5 risk alleles also demonstrated poorer hippocampus-ACC connectivity at rest (P < .05). When cingulum FA was used a regressor in a brain-wide, seed-based regression analysis, significant associations were found between the hippocampus and dorsal regions of the ACC (P < .05).ConclusionsIndividuals with PTSD demonstrated compromised structural connectivity of the hippocampus-ACC pathway. Altered hippocampus-ACC connectivity may represent a highly salient intermediate neural phenotype for PTSD.