Nickel-Catalyzed C-H Arylation of Benzoxazoles and Oxazoles: Benchmarking the Influence of Electronic, Steric and Leaving Group Variations in Phenolic Electrophiles.
Nickel-Catalyzed C-H Arylation of Benzoxazoles and Oxazoles: Benchmarking the Influence of Electronic, Steric and Leaving Group Variations in Phenolic Electrophiles.
Project description:To date, effective nickel-catalyzed enantioselective cross-couplings of alkyl electrophiles that bear oxygen leaving groups have been limited to reactions of allylic alcohol derivatives with Grignard reagents. In this Communication, we establish that, in the presence of a nickel/pybox catalyst, a variety of racemic propargylic carbonates are suitable partners for asymmetric couplings with organozinc reagents. The method is compatible with an array of functional groups and utilizes commercially available catalyst components. The development of a versatile nickel-catalyzed enantioselective cross-coupling process for electrophiles that bear a leaving group other than a halide adds a significant new dimension to the scope of these reactions.
Project description:A novel and efficient methodology for the arylation of benzoxazoles with aromatic aldehydes catalyzed by deep eutectic solvent has been developed. The reaction smoothly proceeded with a wide range of substrates to give the desired products in high yields within short reaction time. Deep eutectic solvents are easily recovered and reused without significant loss of catalytic activity.
Project description:An efficient method was developed for synthesis of benzoxazoles by Cu-catalyzed intramolecular O-arylation of o-halobenzanilides in water. This strategy provides several advantages, such as high yields, water as a green solvent and functional groups tolerance.
Project description:An efficient room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl bromides is presented. The Pd(OAc)2/NiXantphos-based catalyst enables the introduction of various aryl and heteroaryl groups, via a deprotonative cross-coupling process (DCCP) in good to excellent yields (60-99%).
Project description:We report an enantioselective Ni-catalyzed cross coupling of arylzinc reagents with pyridiniumions formed in situ from pyridine and a chloroformate. This reaction provides enantioenriched 2-aryl-1,2-dihydropyridine products that can be elaborated to numerous piperidine derivatives with little or no loss in ee. This method is notable for its use of pyridine, a feedstock chemical, to build a versatile, chiral heterocycle in a single synthetic step.
Project description:Aryl sulfamates, tosylates, and mesylates undergo efficient Ni-catalyzed cross coupling with diverse organostannanes in the presence of relatively unhindered alkylphosphine ligands and KF. The coupling is valuable for difficult bond constructions, such as aryl- heteroaryl, aryl-alkenyl, and aryl-alkynyl, using non-triflate phenol derivatives. A combination of experimental and computational studies implicate an unusual mechanism for transmetalation involving an 8-centered cyclic transition state. This reaction is inhibited by chloride sources due to slow transmetalation of organostannanes at a Ni(II)-chloride intermediate. These studies help to explain why prior efforts to achieve Ni-catalyzed Stille coupling of phenol derivatives were unsuccessful.
Project description:Nickel-catalyzed cross-coupling has emerged as the most versatile approach to date for achieving enantioconvergent carbon-carbon bond formation using racemic alkyl halides as electrophiles. In contrast, there have not yet been reports of the application of chiral nickel catalysts to the corresponding reactions with heteroatom nucleophiles to produce carbon-heteroatom bonds with good enantioselectivity. Herein, we establish that a chiral nickel/pybox catalyst can borylate racemic secondary benzylic chlorides to provide enantioenriched benzylic boronic esters, a highly useful family of compounds in organic synthesis. The method displays good functional group compatibility (e.g., being unimpeded by the presence of an indole, a ketone, a tertiary amine, or an unactivated alkyl bromide), and both of the catalyst components (NiCl2 ⋅glyme and the pybox ligand) are commercially available.
Project description:Allylation and conjunctive cross-coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel-catalyzed conjunctive cross-coupling with a non-conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza-heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β-γ alkene of the starting material, whereas the ϵ-ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3 )-C(sp3 ) reductive elimination.
Project description:Herein, the use of economically and environmentally friendly bis(pinacolato)diboron (B2Pin2) is described as a non-metallic reductant in mediating Ni-catalyzed C(sp3)-C(sp2) reductive cross-coupling of alkyl electrophiles with aryl/vinyl halides. This method exhibits excellent suitability for heteroaryl halides and alkyl halides/Katritzky salts. The present study is compatible with an in situ halogenation of alcohol method, allowing for selective mono-functionalization of diols and bio-relevant alcohols (e.g., carbohydrates). The use of B2Pin2 shows potential for easy scalability without introducing additional metal impurities into the products. It is observed for the first time in the realm of cross-electrophile coupling chemistry that B2Pin2 can sever as a reductant to reduce NiII to Ni0. This mechanistic insight may inspire the development of new reductive bond-forming methodologies that can otherwise be difficult to achieve with a metal reductant.
Project description:Owing to the versatile synthetic utility of its carbon-carbon double bond, low-cost industrial chemical 3,3,3-trifluoropropene (TFP) represents one of the most straightforward and cost-efficient precursors to prepare trifluoromethylated compounds. However, only limited methods for the efficient transformations of TFP have been reported so far. Here, we report a nickel-catalyzed dicarbofunctionalization of TFP. The reaction uses inexpensive NiCl2·6H2O as the catalyst and 4,4'-biMeO-bpy and PCy2Ph as the ligands, allowing the alkyl-arylation of TFP with a variety of tertiary alkyl iodides and arylzinc reagents in high efficiency. This nickel-catalyzed process overcomes the previous challenges by suppressing β-H and β-F eliminations from TFP, rendering this strategy effective for the transformations of TFP into medicinal interest trifluoromethylated compounds.