Reinforcement learning models of risky choice and the promotion of risk-taking by losses disguised as wins in rats.
Ontology highlight
ABSTRACT: Risky decisions are inherently characterized by the potential to receive gains or incur losses, and these outcomes have distinct effects on subsequent decision-making. One important factor is that individuals engage in loss-chasing, in which the reception of a loss is followed by relatively increased risk-taking. Unfortunately, the mechanisms of loss-chasing are poorly understood, despite the potential importance for understanding pathological choice behavior. The goal of the present experiment was to illuminate the mechanisms governing individual differences in loss-chasing and risky-choice behaviors. Rats chose between a low-uncertainty outcome that always delivered a variable amount of reward and a high-uncertainty outcome that probabilistically delivered reward. Loss-processing and loss-chasing were assessed in the context of losses disguised as wins (LDWs), which are loss outcomes that are presented along with gain-related stimuli. LDWs have been suggested to interfere with adaptive decision-making in humans and thus potentially increase loss-making. Here, the rats presented with LDWs were riskier, in that they made more choices for the high-uncertainty outcome. A series of nonlinear models were fit to individual rats' data to elucidate the possible psychological mechanisms that best account for individual differences in high-uncertainty choices and loss-chasing behaviors. The models suggested that the rats presented with LDWs were more prone to showing a stay bias following high-uncertainty outcomes compared to rats not presented with LDWs. These results collectively suggest that LDWs acquire conditioned reinforcement properties that encourage continued risk-taking and increase loss-chasing following previous high-risk decisions. (PsycINFO Database Record
SUBMITTER: Marshall AT
PROVIDER: S-EPMC5682951 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA