Project description:Anti-programmed cell death 1 (PD-1) or anti-PD-ligand (L) 1 drugs, as classic immune checkpoint inhibitors, are considered promising treatment strategies for tumors. In clinical practice, some cancer patients experience drug resistance and disease progression in the process of anti-PD-1/PD-L1 immunotherapy. Tumor-associated macrophages (TAMs) play key roles in regulating PD-1/PD-L1 immunosuppression by inhibiting the recruitment and function of T cells through cytokines, superficial immune checkpoint ligands, and exosomes. There are several therapies available to recover the anticancer efficacy of PD-1/PD-L1 inhibitors by targeting TAMs, including the inhibition of TAM differentiation and re-education of TAM activation. In this review, we will summarize the roles and mechanisms of TAMs in PD-1/PD-L1 blocker resistance. Furthermore, we will discuss the therapies that were designed to deplete TAMs, re-educate TAMs, and intervene with chemokines secreted by TAMs and exosomes from M1 macrophages, providing more potential options to improve the efficacy of PD-1/PD-L1 inhibitors.
Project description:PD-L1+ tumor-derived extracellular vesicles (TEVs) cause systemic immunosuppression and possibly resistance to anti-PD-L1 antibody (αPD-L1) blockade. However, whether and how PD-L1+ TEVs mediate αPD-L1 therapy resistance is unknown. Here, we show that PD-L1+ TEVs substantially decoy αPD-L1 and that TEV-bound αPD-L1 is more rapidly cleared by macrophages, causing insufficient blockade of tumor PD-L1 and subsequent αPD-L1 therapy resistance. Inhibition of endogenous production of TEVs by Rab27a or Coro1a knockout reverses αPD-L1 therapy resistance. Either an increased αPD-L1 dose or macrophage depletion mediated by the clinical drug pexidartinib abolishes αPD-L1 therapy resistance. Moreover, in the treatment cycle with the same total treatment dose of αPD-L1, high-dose and low-frequency treatment had better antitumor effects than low-dose and high-frequency treatment, induced stronger antitumor immune memory, and eliminated αPD-L1 therapy resistance. Notably, in humanized immune system mice with human xenograft tumors, both increased αPD-L1 dose and high-dose and low-frequency treatment enhanced the antitumor effects of αPD-L1. Furthermore, increased doses of αPD-L1 and αPD-1 had comparable antitumor effects, but αPD-L1 amplified fewer PD-1+ Treg cells, which are responsible for tumor hyperprogression. Altogether, our results reveal a TEV-mediated mechanism of αPD-L1-specific therapy resistance, thus providing promising strategies to improve αPD-L1 efficacy.
Project description:Programmed death-ligand 1 (PD-L1) and its receptor, programmed cell death-1 (PD-1), are important negative regulators of immune cell activation. Therapeutically targeting PD-1/PD-L1 in diffuse large B-cell lymphoma (DLBCL) patients with a single agent has limited activity, meriting a deeper understanding of this complex biology and of available PD-L1 clinical assays. In this study, we leveraged 2 large de novo DLBCL phase 3 trials (GOYA and MAIN) to better understand the biologic and clinical relevance of PD-L1 in de novo DLBCL. PD-L1 was expressed on myeloid cells in 85% to 95% of DLBCL patients (depending on staining procedure), compared with 10% on tumor cells, and correlated with macrophage gene expression. PD-L1 did not identify high-risk patients in de novo DLBCL; it correlated with STAT3, macrophage gene expression, and improved outcomes among a subset of patients. These results may help identify immunologically distinct DLBCL subsets relevant for checkpoint blockade. GOYA and MAIN trials were registered at www.clinicaltrials.gov as #NCT01287741 and #NCT00486759, respectively.
Project description:Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
Project description:Anti-PD-L1 therapy exhibits durable efficacy, but only in a small fraction of cancer patients. The immunosuppressive tumor microenvironment (TME) is a crucial obstacle that impedes cancer immunotherapy. Here, we found that anti-PD-L1 therapy coupled with CD4+ T cell depletion induced colorectal tumor regression and vascular normalization, while monotherapy only retarded tumor growth without affecting the tumor vasculature. Moreover, simultaneous PD-L1 blockade and CD4+ T cell depletion eradicated intratumoral PD-L1+ lymphoid and myeloid cell populations, while additively elevating the proportions of CD44+CD69+CD8+, central memory CD44+CD62L+CD8+, and effector memory CD44+CD62L-CD8+ T cells, suggesting a reduction in immunosuppressive cell populations and the activation of CD8+ T cells in the TME. Moreover, anti-PD-L1 therapy reduced the proportions of intratumoral PD-L1+ immune cells and suppressed tumor growth in a CD8+ T cell dependent manner. Together, these results suggest that anti-PD-L1 therapy induces tumor vascular normalization and colorectal tumor regression via CD8+ T cells, which is antagonized by CD4+ T cells. Our findings unveil the positive correlation of tumor regression and vascular normalization in colorectal tumor models upon anti-PD-L1 therapy, providing a potential new strategy to improve its efficacy.
Project description:Cutaneous T cell lymphoma (CTCL) is a disfiguring and incurable disease characterized by skin-homing malignant T cells surrounded by immune cells that promote CTCL growth through an immunosuppressive tumor microenvironment (TME). Preliminary data from our phase I clinical trial of anti-programmed cell death ligand 1 (anti-PD-L1) combined with lenalidomide in patients with relapsed/refractory CTCL demonstrated promising clinical efficacy. In the current study, we analyzed the CTCL TME, which revealed a predominant PD-1+ M2-like tumor-associated macrophage (TAM) subtype with upregulated NF-κB and JAK/STAT signaling pathways and an aberrant cytokine and chemokine profile. Our in vitro studies investigated the effects of anti-PD-L1 and lenalidomide on PD-1+ M2-like TAMs. The combinatorial treatment synergistically induced functional transformation of PD-1+ M2-like TAMs toward a proinflammatory M1-like phenotype that gained phagocytic activity upon NF-κB and JAK/STAT inhibition, altered their migration through chemokine receptor alterations, and stimulated effector T cell proliferation. Lenalidomide was more effective than anti-PD-L1 in downregulation of the immunosuppressive IL-10, leading to decreased expression of both PD-1 and PD-L1. Overall, PD-1+ M2-like TAMs play an immunosuppressive role in CTCL. Anti-PD-L1 combined with lenalidomide provides a therapeutic strategy to enhance antitumor immunity by targeting PD-1+ M2-like TAMs in the CTCL TME.
Project description:BackgroundPD-L1 is an immune inhibitory receptor ligand that leads to T cell dysfunction and apoptosis by binding to its receptor PD-1, which works in braking inflammatory response and conspiring tumor immune evasion. However, in gliomas, the cause of PD-L1 expression in the tumor microenvironment is not yet clear. Besides, auxiliary biomarkers are urgently needed for screening possible responsive glioma patients for anti-PD-1/PD-L1 therapies.MethodsThe distribution of tumor-infiltrating T cells and PD-L1 expression was analyzed via immunofluorescence in orthotopic murine glioma model. The expression of PD-L1 in immune cell populations was detected by flow cytometry. Data excavated from TCGA LGG/GBM datasets and the Ivy Glioblastoma Atlas Project was used for in silico analysis of the correlation among genes and survival.ResultsThe distribution of tumor-infiltrating T cells and PD-L1 expression, which parallels in murine orthotopic glioma model and human glioma microdissections, was interrelated. The IFN-γ level was positively correlated with PD-L1 expression in murine glioma. Further, IFN-γ induces PD-L1 expression on primary cultured microglia, bone marrow-derived macrophages, and GL261 glioma cells in vitro. Seven IFN-γ-induced genes, namely GBP5, ICAM1, CAMK2D, IRF1, SOCS3, CD44, and CCL2, were selected to calculate as substitute indicator for IFN-γ level. By combining the relative expression of the listed IFN-γ-induced genes, IFN-γ score was positively correlated with PD-L1 expression in different anatomic structures of human glioma and in glioma of different malignancies.ConclusionOur study identified the distribution of tumor-infiltrating T cells and PD-L1 expression in murine glioma model and human glioma samples. And we found that IFN-γ is an important cause of PD-L1 expression in the glioma microenvironment. Further, we proposed IFN-γ score aggregated from the expressions of the listed IFN-γ-induced genes as a complementary prognostic indicator for anti-PD-1/PD-L1 therapy.