Ontology highlight
ABSTRACT: Background
Passeriformes ("perching birds" or passerines) make up more than half of all extant bird species. The genome of the zebra finch, a passerine model organism for vocal learning, was noted previously to contain thousands of short interspersed elements (SINEs), a group of retroposons that is abundant in mammalian genomes but considered largely inactive in avian genomes.Results
Here we resolve the deep phylogenetic relationships of passerines using presence/absence patterns of SINEs. The resultant retroposon-based phylogeny provides a powerful and independent corroboration of previous sequence-based analyses. Notably, SINE activity began in the common ancestor of Eupasseres (passerines excluding the New Zealand wrens Acanthisittidae) and ceased before the rapid diversification of oscine passerines (suborder Passeri - songbirds). Furthermore, we find evidence for very recent SINE activity within suboscine passerines (suborder Tyranni), following the emergence of a SINE via acquisition of a different tRNA head as we suggest through template switching.Conclusions
We propose that the early evolution of passerines was unusual among birds in that it was accompanied by de-novo emergence and activity of SINEs. Their genomic and transcriptomic impact warrants further study in the light of the massive diversification of passerines.
SUBMITTER: Suh A
PROVIDER: S-EPMC5729268 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
Suh Alexander A Bachg Sandra S Donnellan Stephen S Joseph Leo L Brosius Jürgen J Kriegs Jan Ole JO Schmitz Jürgen J
Mobile DNA 20171214
<h4>Background</h4>Passeriformes ("perching birds" or passerines) make up more than half of all extant bird species. The genome of the zebra finch, a passerine model organism for vocal learning, was noted previously to contain thousands of short interspersed elements (SINEs), a group of retroposons that is abundant in mammalian genomes but considered largely inactive in avian genomes.<h4>Results</h4>Here we resolve the deep phylogenetic relationships of passerines using presence/absence patterns ...[more]