Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses.
Ontology highlight
ABSTRACT: Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
SUBMITTER: McMillan LJ
PROVIDER: S-EPMC5764799 | biostudies-literature | 2018 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA