Ontology highlight
ABSTRACT: Objectives
Phosphorus (P) deficiency is a major limitation to plant growth. Under several abiotic stresses, including P deficiency, upland cereal crops, such as maize, are well known to develop lysigenous aerenchyma, a root tissue containing gas spaces. Contrary to upland species, rice develops aerenchyma constitutively. Nevertheless, aerenchyma in rice is also enhanced by several abiotic stresses, including P deficiency. However, studies are limited and genotypic differences are not clear.Results
The formation of inducible aerenchyma in response to P deficiency was evaluated in two rice genotypes, DJ123 and Nerica4. Whole root porosity increased for both genotypes in low P conditions, but was more pronounced in DJ123. Direct aerenchyma measurements, at 20 and 30 mm from the seminal root tip, revealed that aerenchyma in low P conditions was only enhanced in DJ123. These results confirm that P deficiency in rice induces the formation of aerenchyma, and further show that genotypic differences exist. Interestingly, DJ123 is considered tolerant to P deficiency, whereas Nerica4 is sensitive, pointing towards a potential role of aerenchyma in tolerance to P deficiency.
SUBMITTER: Pujol V
PROVIDER: S-EPMC5778689 | biostudies-literature | 2018 Jan
REPOSITORIES: biostudies-literature
Pujol Vincent V Wissuwa Matthias M
BMC research notes 20180122 1
<h4>Objectives</h4>Phosphorus (P) deficiency is a major limitation to plant growth. Under several abiotic stresses, including P deficiency, upland cereal crops, such as maize, are well known to develop lysigenous aerenchyma, a root tissue containing gas spaces. Contrary to upland species, rice develops aerenchyma constitutively. Nevertheless, aerenchyma in rice is also enhanced by several abiotic stresses, including P deficiency. However, studies are limited and genotypic differences are not cle ...[more]