Project description:Antibiotics (AB) are used in intensive pig production systems to control infectious diseases and they are suspected to be a major source of antibiotic resistance. Following the ban on AB use as growth promoters in the EU, their prophylactic use in-feed is now under review. The aim of this study was to evaluate the effect of removing prophylactic in-feed AB on pig health and welfare indicators. Every Monday for six weeks, a subset of 70 pigs were weaned, tagged and sorted into two groups of 35 pigs according to weight (9.2 ± 0.6 kg). AB were removed from the diet of one group (NO, n = 6) and maintained in the other group (AB, n = 6) for nine weeks. Ten focal pigs were chosen per group. After c. five weeks each group was split into two pens of c.17 pigs for the following 4 weeks. Data were recorded weekly. Skin, tail, ear, flank and limb lesions of focal pigs were scored according to severity. The number of animals per group affected by health deviations was also recorded. The number of fights and harmful behaviours (ear, tail bites) per group was counted during 3×5min observations once per week. Data were analysed using mixed model equations and binomial logistic regression. At group level, AB pigs were more likely to have tail (OR = 1.70; P = 0.05) but less likely to have ear lesions than NO pigs (OR = 0.46; P<0.05). The number of ear bites (21.4±2.15 vs. 17.3±1.61; P<0.05) and fights (6.91±0.91 vs. 5.58±0.72; P = 0.09) was higher in AB than in NO pigs. There was no effect of treatment on health deviations and the frequency of these was low. Removing AB from the feed of weaner pigs had minimal effects on health and welfare indicators.
Project description:We intended to assess how exposure of piglets to deoxynivalenol (DON)-contaminated feed impacted their growth, immune response and gut development. Piglets were fed traditional Phase I, Phase II and Phase III diets with the control group receiving 0.20-0.40 ppm DON (referred to as the Control group) and treatment group receiving much higher level of DON-contaminated wheat (3.30-3.80 ppm; referred to as DON-contaminated group). Feeding a DON-contaminated diet had no impact on average daily feed intake (ADFI) (p < 0.08) or average daily gain (ADG) (p > 0.10) but it did significantly reduce body weight over time relative to the control piglets (p < 0.05). Cytokine analysis after initial exposure to the DON-contaminated feed did not result in significant differences in serum interleukin (IL) IL1β, IL-8, IL-13, tumor necrosis factor (TNF)-α or interferon (IFN)-γ. After day 24, no obvious changes in jejunum or ileum gut morphology, histology or changes in gene expression for IL-1β, IL-6, IL-10, TNFα, or Toll-like receptor (TLR)-4 genes. IL-8 showed a trend towards increased expression in the ileum in DON-fed piglets. A significant increase in gene expression for claudin (CLDN) 7 gene expression and a trend towards increased CLDN 2-expression was observed in the ileum in piglets fed the highly DON-contaminated wheat. Because CLDN localization was not negatively affected, we believe that it is unlikely that gut permeability was affected. Exposure to DON-contaminated feed did not significantly impact weaner piglet performance or gut physiology.
Project description:This scientific opinion focuses on the welfare of pigs on farm, and is based on literature and expert opinion. All pig categories were assessed: gilts and dry sows, farrowing and lactating sows, suckling piglets, weaners, rearing pigs and boars. The most relevant husbandry systems used in Europe are described. For each system, highly relevant welfare consequences were identified, as well as related animal-based measures (ABMs), and hazards leading to the welfare consequences. Moreover, measures to prevent or correct the hazards and/or mitigate the welfare consequences are recommended. Recommendations are also provided on quantitative or qualitative criteria to answer specific questions on the welfare of pigs related to tail biting and related to the European Citizen's Initiative 'End the Cage Age'. For example, the AHAW Panel recommends how to mitigate group stress when dry sows and gilts are grouped immediately after weaning or in early pregnancy. Results of a comparative qualitative assessment suggested that long-stemmed or long-cut straw, hay or haylage is the most suitable material for nest-building. A period of time will be needed for staff and animals to adapt to housing lactating sows and their piglets in farrowing pens (as opposed to crates) before achieving stable welfare outcomes. The panel recommends a minimum available space to the lactating sow to ensure piglet welfare (measured by live-born piglet mortality). Among the main risk factors for tail biting are space allowance, types of flooring, air quality, health status and diet composition, while weaning age was not associated directly with tail biting in later life. The relationship between the availability of space and growth rate, lying behaviour and tail biting in rearing pigs is quantified and presented. Finally, the panel suggests a set of ABMs to use at slaughter for monitoring on-farm welfare of cull sows and rearing pigs.
Project description:In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of the animal welfare legislation. The present Opinion deals with protection of pigs during transport. The welfare of pigs during transport by road is the main focus, but other means of transport are also covered. Current practices related to transport of pigs during the different stages (preparation, loading/unloading, transit and journey breaks) are described. Overall, 10 welfare consequences were identified as highly relevant for the welfare of pigs during transport based on the severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, prolonged hunger, prolonged thirst, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A variety of hazards were identified, mainly relating to factors such as mixing of unfamiliar pigs, inappropriate handling methods and devices, the use of pick-up pens, inexperienced/untrained handlers, structural deficiencies of vehicles and facilities, poor driving conditions, unfavourable microclimatic and environmental conditions and poor husbandry practices leading to these welfare consequences. The Opinion contains general and specific conclusions relating to the different stages of transport of pigs. Recommendations to prevent hazards and to correct or mitigate welfare consequences are made. Recommendations were also developed to define quantitative thresholds for microclimatic conditions and minimum space allowance within means of transport. The development of the welfare consequences over time was assessed in relation to maximum journey duration. The Opinion covers specific animal transport scenarios identified by the European Commission relating to transport of cull sows and 'special health status animals', and lists welfare concerns associated with these.
Project description:Background and aimsNon-therapeutic antibiotic use is associated with the current decrease in antibiotic therapeutic efficiency and the emergence of a wide range of resistant strains, which constitutes a public health risk. This study aimed to evaluate the use of Saccharomyces cerevisiae var. boulardii RC009 as a nutritional feed additive to substitute the prophylactic use of antibiotics and improve the productive performance and health of post-weaning piglets.Materials and methodsFour regular nutritional phases were prepared. Post-weaning pigs (21-70 days old) received one of two dietary treatments: T1-basal diet (BD-control group) with in-feed antibiotics as a prophylactic medication (one pulse of Tiamulin in P3 and one pulse of Amoxicillin in P4); and T2-BD without in-feed antibiotics but with Saccharomyces boulardii RC009 (1 × 1012 colony forming unit/T feed). The feed conversion ratio (FCR), total weight gain (TWG-kg), and daily weight gain (DWG-kg) were determined. A post-weaning growth index (GI) was calculated and animals (160 days old) from each treatment were analyzed at the abattoir after sacrifice for carcass weight and respiratory tract lesions.ResultsPigs consuming probiotics had higher TWG and DWG than the control group. The group of animals with low body weight obtained the same results. Saccharomyces boulardii administration decreased diarrhea, and FCR reduction was related to a GI improvement. A significant increase in carcass weight and muscle thickness reduction was observed in animals received the probiotic post-weaning.ConclusionSaccharomyces boulardii RC009, a probiotic additive, was found to improve the production parameters of pigs post-weaning and enhance their health status, indicating that it may be a promising alternative to prophylactic antibiotics.
Project description:Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.
Project description:Since animals express their internal state through behaviour, changes in said behaviour may be used to detect early signs of problems, such as in animal health. Continuous observation of livestock by farm staff is impractical in a commercial setting to the degree required to detect behavioural changes relevant for early intervention. An automated monitoring system is developed; it automatically tracks pig movement with depth video cameras, and automatically measures standing, feeding, drinking, and locomotor activities from 3D trajectories. Predictions of standing, feeding, and drinking were validated, but not locomotor activities. An artificial, disruptive challenge; i.e., introduction of a novel object, is used to cause reproducible behavioural changes to enable development of a system to detect the changes automatically. Validation of the automated monitoring system with the controlled challenge study provides a reproducible framework for further development of robust early warning systems for pigs. The automated system is practical in commercial settings because it provides continuous monitoring of multiple behaviours, with metrics of behaviours that may be considered more intuitive and have diagnostic validity. The method has the potential to transform how livestock are monitored, directly impact their health and welfare, and address issues in livestock farming, such as antimicrobial use.
Project description:Animal welfare standards have been incorporated in EU legislation and in farm assurance schemes, based on scientific information and aiming to safeguard the welfare of the species concerned. Recently, emphasis has shifted from resource-based measures of welfare to animal-based measures, which are considered to assess more accurately the welfare status. The data used in this analysis were collected from April 2013 to May 2016 through the 'Real Welfare' scheme in order to assess on-farm pig welfare, as required for those finishing pigs under the UK Red Tractor Assurance scheme. The assessment involved five main measures (percentage of pigs requiring hospitalization, percentage of lame pigs, percentage of pigs with severe tail lesions, percentage of pigs with severe body marks and enrichment use ratio) and optional secondary measures (percentage of pigs with mild tail lesions, percentage of pigs with dirty tails, percentage of pigs with mild body marks, percentage of pigs with dirty bodies), with associated information about the environment and the enrichment in the farms. For the complete database, a sample of pens was assessed from 1928 farm units. Repeated measures were taken in the same farm unit over time, giving 112 240 records at pen level. These concerned a total of 13 480 289 pigs present on the farm during the assessments, with 5 463 348 pigs directly assessed using the 'Real Welfare' protocol. The three most common enrichment types were straw, chain and plastic objects. The main substrate was straw which was present in 67.9% of the farms. Compared with 2013, a significant increase of pens with undocked-tail pigs, substrates and objects was observed over time (P0.3). The results from the first 3 years of the scheme demonstrate a reduction of the prevalence of animal-based measures of welfare problems and highlight the value of this initiative.
Project description:The objective of this study was to determine the potential biological mechanisms of improved growth performance associated with potential changes in the metabolic profiles and intestinal microbiome composition of weaned pigs fed various feed additives. Three separate 42 day experiments were conducted to evaluate the following dietary treatments: chlortetracycline and sulfamethazine (PC), herbal blends, turmeric, garlic, bitter orange extract, sweet orange extract, volatile and semi-volatile milk-derived substances, yeast nucleotide, and cell wall products, compared with feeding a non-supplemented diet (NC). In all three experiments, only pigs fed PC had improved (p < 0.05) ADG and ADFI compared with pigs fed NC. No differences in metabolome and microbiome responses were observed between feed additive treatments and NC. None of the feed additives affected alpha or beta microbiome diversity in the ileum and cecum, but the abundance of specific bacterial taxa was affected by some dietary treatments. Except for feeding antibiotics, none of the other feed additives were effective in improving growth performance or significantly altering the metabolomic profiles, but some additives (e.g., herbal blends and garlic) increased (p < 0.05) the relative abundance of potentially protective bacterial genera that may be beneficial during disease challenge in weaned pigs.