Project description:Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, followed by cholangiocarcinoma (CCA). HCC is the third most common cause of cancer death worldwide, and its incidence is rising, associated with an increased prevalence of obesity and nonalcoholic fatty liver disease (NAFLD). However, current treatment options are limited. Genetic factors and epigenetic factors, influenced by age and environment, significantly impact the initiation and progression of NAFLD-related HCC. In addition, both transcriptional factors and post-transcriptional modification are critically important for the development of HCC in the fatty liver under inflammatory and fibrotic conditions. The early diagnosis of liver cancer predicts curative treatment and longer survival. However, clinical HCC cases are commonly found in a very late stage due to the asymptomatic nature of the early stage of NAFLD-related HCC. The development of diagnostic methods and novel biomarkers, as well as the combined evaluation algorithm and artificial intelligence, support the early and precise diagnosis of NAFLD-related HCC, and timely monitoring during its progression. Treatment options for HCC and NAFLD-related HCC include immunotherapy, CAR T cell therapy, peptide treatment, bariatric surgery, anti-fibrotic treatment, and so on. Overall, the incidence of NAFLD-related HCC is increasing, and a better understanding of the underlying mechanism implicated in the progression of NAFLD-related HCC is essential for improving treatment and prognosis.
Project description:Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Project description:Cerebral palsy (CP) is one of the most frequent causes of motor disability in children. According to the up-to-date definition, CP is a group of permanent disorders of the development of movement and posture, causing activity limitations that are attributed to non-progressive disturbances that occurred in the developing foetal or infant brain. The CP definition has evolved over time; the problem is aetiologically and clinically very heterogeneous. According to European data, the average frequency of CP is 2.08 per 1000 live births, but in the group of children born with a body weight below 1500 g, the frequency is 70 times higher when compared with the group of children with a body weight over 2500 g at birth. The risk factors for CP can be divided into pre-conception, prenatal, perinatal and postnatal ones. CP commonly co-exists with epilepsy, in particular drug-resistant epilepsy, but also with mental retardation, visual and hearing impairment, as well as feeding and behavioral disorders. The degree of motor problem varies from mild to very severe making the child totally dependent on caregivers. Cerebral palsy is divided into forms depending on the type of motor disorders which dominate the clinical presentation; the traditional classifications by Ingram and Hagberg have now been replaced by the Surveillance of Cerebral Palsy in Europe classification which divides CP into spastic, dyskinetic and ataxic forms. Although cerebral palsy is a clinical diagnosis, modern diagnostic imaging provides information that allows the division of the results of magnetic resonance imaging in children with cerebral palsy into five groups according to the magnetic resonance imaging classification system. Just as the clinical presentation and the factors predisposing for CP are very diverse, treatment is also a very complex problem. Modern treatment of spasticity includes both botulinum toxin therapies and surgical techniques, eg, rhizotomy. The authors present current views on definitions, risk factors, diagnostics and treatment of CP as well as comorbid problems, eg, drug-resistant epilepsy.
Project description:Leukocyte telomere length (LTL) gets shorter with each cell division and is also sensitive to reactive oxygen species damage and inflammatory processes. Studies in adults with non-alcoholic fatty liver disease (NAFLD) have found that increased fibrosis but not ALT levels are associated with shorter LTL. Few pediatric studies have been conducted; as such, we sought to evaluate potential associations between LTL and liver disease and liver disease progression in pediatric patients. Using data from the Treatment of NAFLD in Children (TONIC) randomized controlled trial, we assessed the potential predictive relationship between LTL and liver disease progression based on two successive liver biopsies over 96 weeks. We assessed the potential relationship between LTL and child age, sex, and race/ethnicity and features of liver disease including components of histology. We subsequently evaluated predictors for improvement in non-alcoholic steatohepatitis (NASH) at 96 weeks including LTL. We also assessed predictors of lobular inflammation improvement at 96 weeks using multivariable models. Mean LTL at baseline was 1.33 ± 0.23 T/S. Increasing lobular and portal inflammation were associated with longer LTL. In multivariable models, greater lobular inflammation at baseline was associated with longer LTL (Coeff 0.03, 95% CI 0.006-0.13; p = 0.03). Longer LTL at baseline was associated with worsening lobular inflammation at 96 weeks (Coeff 2.41, 95% CI 0.78-4.04; p < 0.01). There was no association between liver fibrosis and LTL. The association between LTL and pediatric NASH does not parallel adults with no association between fibrosis stage and NASH. Conversely, longer LTL was associated with more lobular inflammation at baseline and increased lobular inflammation over the 96-week period. Longer LTL in children may indicate greater risk for future complications from NASH.
Project description:BackgroundHepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases.Scope of reviewWe present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers.Major conclusionWith our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Project description:NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Project description:ObjectiveTo investigate longitudinal changes in the liver stiffness measurement (LSM) in the general adult population without known liver disease and to describe its association with metabolic risk factors, with a special focus on subjects with non-alcoholic fatty liver disease (NAFLD) and dysglycemia.Material and methodsA longitudinal adult population-based cohort study was conducted in Catalonia. LSM was measured by transient elastography (TE) at baseline and follow-up (median: 4.2 years). Subgroup with NAFLD and dysglycemia were analyzed. Moderate-to-advanced liver fibrosis was defined as LSM ≥8.0 kPa and LSM ≥9.2 kPa respectively.ResultsAmong 1.478 subjects evaluated, the cumulative incidence of LSM ≥8.0 kPa and ≥9.2 kPa at follow-up was 2.8% and 1.9%, respectively. This incidence was higher in NAFLD (7.1% for LSM ≥8.0 kPa and 5% for LSM ≥9.2 kPa) and dysglycemia (6.2% for LSM ≥8.0 kPa and 4.7% for LSM ≥9.2 kPa) subgroups. In the global cohort, the multivariate analyses showed that dysglycemia, abdominal obesity and atherogenic dyslipidemia were significantly associated with progression to moderate-to-advanced liver fibrosis. Female sex was negatively associated. In subjects with NAFLD, abdominal obesity and dysglycemia were associated with changes in LSM to ≥8.0 kPa and ≥9.2 kPa at follow-up. A decline in LSM value to <8 kPa was observed in 64% of those subjects with a baseline LSM ≥8.0 kPa.ConclusionsIn this population study, the presence of abdominal obesity and dysglycemia were the main risk metabolic factors associated with moderate-to-advanced liver fibrosis development over time in general populations as well as in subjects with NAFLD.