Project description:During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid-binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B-dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A-RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B-dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Project description:In most species, homologous chromosomes must recombine in order to segregate accurately during meiosis1. Because small chromosomes would be at risk of missegregation if recombination were randomly distributed, the double-strand breaks (DSBs) that initiate recombination are not located arbitrarily2. How the nonrandomness of DSB distributions is controlled is not understood, although several pathways are known to regulate the timing, location and number of DSBs. Meiotic DSBs are generated by Spo11 and accessory DSB proteins, including Rec114 and Mer2, which assemble on chromosomes3-7 and are nearly universal in eukaryotes8-11. Here we demonstrate how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state. The engagement of homologous chromosomes with each other regulates the dissociation of Rec114 and Mer2 later in prophase I, whereas the timing of replication and the proximity to centromeres or telomeres influence the accumulation of Rec114 and Mer2 early in prophase I. Another early mechanism enhances the binding of Rec114 and Mer2 specifically on the shortest chromosomes, and is subject to selection pressure to maintain the hyperrecombinogenic properties of these chromosomes. Thus, the karyotype of an organism and its risk of meiotic missegregation influence the shape and evolution of its recombination landscape. Our results provide a cohesive view of a multifaceted and evolutionarily constrained system that allocates DSBs to all pairs of homologous chromosomes.
Project description:BackgroundCohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes.ResultsThrough high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward.ConclusionsOur findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Project description:A new ubiquitin-processing protease (Ubp-M) has been identified in mammalian cells that is phosphorylated at the onset of mitosis and dephosphorylated during the metaphase/anaphase transition. The carboxyl-terminal domain of this 823-aa protein can be phosphorylated in vitro with either extracts of mitotic cells or purified cdc-2/cyclin B complexes. Recombinant Ubp-M is able to deubiquitinate histone H2A in vitro, and the phosphorylated form is also enzymatically active. Wild-type Ubp-M, transiently expressed as green fluorescent protein-fusion proteins, localizes in the cytoplasm of cultured cells, but mutant forms, lacking an active-site cysteine, associate closely with mitotic chromosomes during all stages of cell division and remain within the nucleus during the postmitotic period. Cells transfected with plasmids containing mutant Ubp-M genes stop dividing and eventually undergo apoptosis. Ubp-M may deubiquitinate one or more critical proteins that are involved in the condensation of mitotic chromosomes, possibly acting selectively on histones H2A and H2B, the major ubiquitinated proteins of chromatin.
Project description:Meiotic cells undergo a single round of DNA replication followed by two rounds of chromosome segregation (the meiotic divisions) to produce haploid gametes. Both DNA replication and chromosome segregation are similarly regulated by CDK oscillations in mitotic cells. Yet how these two events are uncoupled between the meiotic divisions is unclear. Using Saccharomyces cerevisiae, we show that meiotic cells inhibit both helicase loading and helicase activation to prevent DNA replication between the meiotic divisions. CDK and the meiosis-specific kinase Ime2 cooperatively inhibit helicase loading, and their simultaneous inhibition allows inappropriate helicase reloading. Further analysis uncovered two previously unknown mechanisms by which Ime2 inhibits helicase loading. Finally, we show that CDK and the polo-like kinase Cdc5 trigger degradation of Sld2, an essential helicase-activation protein. Together, our data demonstrate that multiple kinases inhibit both helicase loading and activation between the meiotic divisions, thereby ensuring reductive cell division.
Project description:Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II.
Project description:In the early stages of meiosis, maternal and paternal chromosomes pair with their homologous partner and recombine to ensure exchange of genetic information and proper segregation. These events can vary drastically between species and between males and females of the same species. In Drosophila, in contrast to females, males do not form synaptonemal complexes (SCs), do not recombine, and have no crossing over; yet, males are able to segregate their chromosomes properly. Here, we investigated the early steps of homolog pairing in Drosophila males. We found that homolog centromeres are not paired in germline stem cells (GSCs) and become paired in the mitotic region before meiotic entry, similarly to females. Surprisingly, male germline cells express SC proteins, which localize to centromeres and promote pairing. We further found that the SUN/KASH (LINC) complex and microtubules are required for homolog pairing as in females. Chromosome movements in males, however, are much slower than in females and we demonstrate that this slow dynamic is compensated in males by having longer cell cycles. In agreement, slowing down cell cycles was sufficient to rescue pairing-defective mutants in female meiosis. Our results demonstrate that although meiosis differs significantly between males and females, sex-specific cell cycle kinetics integrate similar molecular mechanisms to achieve proper centromere pairing.
Project description:Infertility is defined as the inability of a couple to conceive despite trying for a year, and it affects approximately 15% of the reproductive-age population. It is considered a genetically lethal factor, as the family lineage stops at that individual with no progeny produced. A genetic defect associated with an infertile individual cannot be transmitted to the offspring, ensuring the maintenance of reproductive fitness of the species. However, with the advent of assisted reproductive techniques (ART), we are now able to overcome sterility and bypass nature's protective mechanisms that developed through evolution to prevent fertilization by defective or deficient sperm.
Project description:Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special issue on Parkinson disease.