Project description:Crossover recombination is a hallmark of meiosis, which holds the paternal and maternal chromosomes (homologs) together for their faithful separation, meanwhile, it promotes genetic diversity of progenies. The pattern of crossover is mainly controlled by the architecture of meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distributions of budding yeast axis components (Red1, Hop1, and Rec8) and the CO-associated Zip3 foci in detail in different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that altered temperature coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced alterations in axis distribution and Zip3 foci depend on the changes in DNA negative supercoil. These findings suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoil to increase crossovers and modulate chromosome organization. These findings provide a novel view in understanding the effect and mechanism of temperature on meiosis recombination and chromosome organization, and thus also have an important implication in evolution and breeding.
Project description:Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Project description:IntroductionClinical Coaching Cards is a serious game for faculty development in which players take turns as Teacher and Coach to apply teaching techniques on game cards to identify new approaches to teaching in the clinical environment. The game employs active learning theory and coaching frameworks.MethodsBased on a literature search and local faculty practices, we identified 14 techniques for clinical teaching and created a deck of cards summarizing each. We adapted rules from social judgment games so that participants proposed and selected techniques for applicability to their own teaching. The game was presented as a subsession of larger faculty development workshops hosted by the University of Washington, and players included faculty, residents, and medical students. Evaluations focused on the applicability of techniques to participants' clinical practice and preferred new techniques.ResultsSeventy-four players provided evaluations out of over 150 participants across six workshops. Participants rated the session as mostly or very organized in 70 of 74 evaluations (95%), the introductory material as mostly or very relevant in 67 evaluations (91%), and the teaching techniques as most or several being useful in 69 evaluations (93%). Although some techniques were more popular than others, every technique was selected as a Top 3 technique for future practice.DiscussionClinical Coaching Cards is a card game that applies active learning within a framework of peer coaching to teach bedside and clinical teaching techniques.
Project description:In allopolyploids, correct chromosome segregation requires suppression of non-homologous crossovers while levels of homologous crossovers are ensured. To date, no mechanism able to specifically inhibit non-homologous crossovers has been described in allopolyploids other than in bread wheat. Here, we show that reducing the number of functional copies of MSH4, an essential gene for the main crossover pathway, prevents non-homologous crossovers in allotetraploid Brassica napus. We show that non-homologous crossovers originate almost exclusively from the MSH4-dependent recombination pathway and that their numbers decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically returns to single copy following numerous independent polyploidy events, a pattern that is probably not by chance. These results suggest that stabilization of allopolyploid meiosis can be enhanced by loss of a key meiotic recombination gene.
Project description:Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases--the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs--as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs.
Project description:A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4',6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100-115 Mb) and chromosome 11 the smallest (49-53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/mum for euchromatin and 3.67 Mb/mum for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project.
Project description:We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.
Project description:The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics. In the present study, we developed a robust and reliable enhanced haplotype oligo-painting (EHOP) technique to image small amounts of oligos, enabling visual discrimination of homologous chromosomes. Using EHOP developed based on sequence polymorphisms and reconstructed oligonucleotides, we visually distinguished parental and most recombinant chromosomes in cucumber F1 hybrids and F2 populations. Results from EHOP revealed that meiotic CO events preferentially occur in the 30-60% intervals of chromosome arms with lower sequence polymorphisms and significant recombination bias exists between cultivated and ancestral chromosomes. Due to the occupation of extensive heterochromatin occupancy, it is not yet possible to precisely identify the meiotic COs present in the central portion of chr2 and chr4. Notably, CO accessibility was universally detected in the cytological centromere region in F2 populations, a feature rarely observed in crops with large genomes. EHOP demonstrated exceptional performance in distinguishing homologous chromosomes and holds significant potential for broad application in studying homologous chromosome interactions.
Project description:BackgroundThe chromosome characteristics of the butterfly Bicyclus anynana, have received little attention, despite the scientific importance of this species. This study presents the characterization of chromosomes in this species by means of cytogenetic analysis and linkage mapping.Methodology/principal findingsPhysical genomic features in the butterfly B. anynana were examined by karyotype analysis and construction of a linkage map. Lepidoptera possess a female heterogametic W-Z sex chromosome system. The WZ-bivalent in pachytene oocytes of B. anynana consists of an abnormally small, heterochromatic W-chromosome with the Z-chromosome wrapped around it. Accordingly, the W-body in interphase nuclei is much smaller than usual in Lepidoptera. This suggests an intermediate stage in the process of secondary loss of the W-chromosome to a ZZ/Z sex determination system. Two nucleoli are present in the pachytene stage associated with an autosome and the WZ-bivalent respectively. Chromosome counts confirmed a haploid number of n = 28. Linkage mapping had to take account of absence of crossing-over in females, and of our use of a full-sib crossing design. We developed a new method to determine and exclude the non-recombinant uninformative female inherited component in offspring. The linkage map was constructed using a novel approach that uses exclusively JOINMAP-software for Lepidoptera linkage mapping. This approach simplifies the mapping procedure, avoids over-estimation of mapping distance and increases the reliability of relative marker positions. A total of 347 AFLP markers, 9 microsatellites and one single-copy nuclear gene covered all 28 chromosomes, with a mapping distance of 1354 cM. Conserved synteny of Tpi on the Z-chromosome in Lepidoptera was confirmed for B. anynana. The results are discussed in relation to other mapping studies in Lepidoptera.Conclusions/significanceThis study adds to the knowledge of chromosome structure and evolution of an intensively studied organism. On a broader scale it provides an insight in Lepidoptera sex chromosome evolution and it proposes a simpler and more reliable method of linkage mapping than used for Lepidoptera to date.
Project description:In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb-1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria.