Ontology highlight
ABSTRACT: Significance
High throughput sample processing is of particular interests for quantitative proteomics. The previously developed 96FASP is high throughput and appealing, however it is time-consuming in the context of centrifugation-based liquid transfer (~1.5h per spin). This study presents a truly high throughput sample preparation method based on large cut-off 96-well filter plate, which shortens the spin time to ~20min. To our knowledge, this is the first multi-well method that is entirely comparable with conventional FASP. This study thoroughly examined two types of filter plates and performed side-by-side comparisons with single FASP. Two types of samples, whole cell lysate of a UTI (urinary tract infection)-associated Klebsiella pneumoniae cell and human urine, were tested which demonstrated its capability for quantitative proteomics. The q96FSAP approach makes the filter plate-based approach more appealing for protein biomarker discovery projects, and could be broadly applied to large scale proteomics analysis.
SUBMITTER: Yu Y
PROVIDER: S-EPMC6029622 | biostudies-literature | 2017 Aug
REPOSITORIES: biostudies-literature
Journal of proteomics 20170629
Filter aided sample preparation (FASP) is becoming a central method for proteomic sample cleanup and peptide generation prior to LC-MS analysis. We previously adapted this method to a 96-well filter plate, and applied to prepare protein digests from cell lysate and body fluid samples in a high throughput quantitative manner. While the 96FASP approach is scalable and can handle multiple samples simultaneously, two key advantages compared to single FASP, it is also time-consuming. The centrifugati ...[more]