Project description:The field of graft-versus-host disease (GvHD) has experienced significant growth, with increased number of clinical trials and the approval of several agents by the US Food and Drug Administration for both acute and chronic GvHD treatment. In addition, the development of prognostic biomarker algorithms has enabled risk stratification in acute GvHD. However, prevention remains the cornerstone of GvHD management. Notable recent changes include the expansion of donor options with the increased use of haploidentical donor and unrelated donor transplantation, the development of ex vivo selective T-cell depletion strategies, recent approval by the Food and Drug Administration of abatacept for GvHD prevention, and the application of posttransplant cyclophosphamide in matched and mismatched donor settings. In this article, we review the results of recent clinical trials in GvHD prophylaxis and discuss the changes in clinical practice and promising emerging strategies driving the field forward.
Project description:Current approaches to prevent and treat graft-versus-host disease (GVHD) after stem cell transplantation rely principally on pharmacological immune suppression. Such approaches are limited by drug toxicity, nonspecific immune suppression, and a requirement for long-term therapy. Our increased understanding of the regulatory cells and molecular pathways involved in limiting pathogenic immune responses opens the opportunity for the use of these cell subsets to prevent and/or GVHD. The theoretical advantages of this approach is permanency of effect, potential for facilitating tissue repair, and induction of tolerance that obviates a need for ongoing drug therapy. To date, a number of potential cell subsets have been identified, including FoxP3+ regulatory T (Treg) and FoxP3negIL-10+ (FoxP3-negative) regulatory T (Tr1), natural killer (NK) and natural killer T (NKT) cells, innate lymphoid cells, and various myeloid suppressor populations of hematopoietic (eg, myeloid derived suppressor cells) and stromal origin (eg, mesenchymal stem cells). Despite initial technical challenges relating to large-scale selection and expansion, these regulatory lineages are now undergoing early phase clinical testing. To date, Treg therapies have shown promising results in preventing clinical GVHD when infused early after transplant. Results from ongoing studies over the next 5 years will delineate the most appropriate cell lineage, source (donor, host, third party), timing, and potential exogenous cytokine support needed to achieve the goal of clinical transplant tolerance.
Project description:Oral acute graft-versus-host disease (aGVHD) is rare and with no diagnostic criteria. We report a case of oral aGVHD with three clinical phases. A self-limited prodrome of largely subjective oral symptoms was followed by concurrent oral and upper gastrointestinal aGVHD. Six months after transplantation, the patient was diagnosed with severe oral and upper gastrointestinal chronic GVHD. We compared the salivary microbiota of our patient at the time of diagnosis of aGVHD with 50 contemporaneous transplant recipients and found no evidence for oral microbiota involvement in pathogenesis. This in-depth N-of-1 analysis reveals novel aspects of oral aGVHD pathogenesis.
Project description:Allogeneic hematopoietic cell transplantation is a potentially curative treatment of different hematological malignancies. A major life-threatening complication is acute graft-versus-host disease (GVHD), in particular when the disease becomes steroid refractory. Based on the detection of pathogenic cytokines, chemokines, and T-cell subsets in individuals developing GVHD or experimental GVHD models, different therapeutic strategies have been developed. A potential cause why targeting individual receptors can lack efficacy could be that multiple cytokines, danger signals, and chemokine that have redundant functions are released during GVHD. To overcome this redundancy, novel strategies that do not target individual surface molecules like chemokine receptors, integrins, and cytokine receptors, but instead inhibit signaling pathways downstream of these molecules, have been tested in preclinical GVHD models and are currently being tested in clinical GVHD trials. Another important development is tissue regenerative approaches that promote healing of GVHD-related tissue damage as well as strategies that rely on microbiota modifications. These approaches are promising because they act very differently from conventional immunosuppression, instead aiming at reinstalling tissue homeostasis and microbiome diversity. This review discusses major novel developments in GVHD therapy that are based on a better understanding of GVHD biology, the repurposing of novel kinase inhibitors, microbiome modification strategies, and tissue-regenerative approaches.
Project description:Graft-versus-host disease (GVHD) is a principal cause of morbidity following allogeneic hematopoietic cell transplantation (HCT). Standard therapy for GVHD, high-dose steroids, results in complete responses (CRs) in 35% of patients. Because tumor necrosis factor-alpha (TNFalpha) is an important effector of experimental GVHD, we treated patients with new-onset GVHD with steroids plus the TNFalpha inhibitor etanercept on a previously reported pilot trial (n = 20) and a phase 2 trial (n = 41). We compared their outcomes with those of contemporaneous patients with GVHD (n = 99) whose initial therapy was steroids alone. Groups were similar with respect to age, conditioning, donor, degree of HLA match, and severity of GVHD at onset. Patients treated with etanercept were more likely to achieve CR than were patients treated with steroids alone (69% vs 33%; P < .001). This difference was observed in HCT recipients of both related donors (79% vs 39%; P = .001) and unrelated donors (53% vs 26%; P < .001). Plasma TNFR1 levels, a biomarker for GVHD activity, were elevated at GVHD onset and decreased significantly only in patients with CR. We conclude that etanercept plus steroids as initial therapy for acute GVHD results in a substantial majority of CRs. This trial was referenced at www.clinicaltrials.gov as NCT00141713.
Project description:Allogeneic hematopoietic stem cell transplantation (HSCT) is the treatment of choice for high-risk hematological malignancies, yet a major complication associated with this therapy is acute graft-versus-host disease (GVHD). Despite a well-defined pathophysiological mechanism, there are no definitive markers for predicting acute GVHD development or progression to advanced stages. In the current study, we enrolled four acute GVHD and four acute GVHD-free recipients of allogeneic HSCT and collected peripheral blood just prior to onset of clinical acute GVHD for analysis on Affymetrix GeneChip Human Genome U133 Plus 2.0 microarrays. We noted significant differences in expression of 1,658 genes between control and acute GVHD patients, based on an analysis of covariance (ANCOVA) by type of transplant, a pooled error estimate, and a false discovery rate (FDR) of 10%. In conclusion, we offer the first report of a preliminary molecular signature of acute GVHD in allogeneic HSCT patients.
Project description:Acute graft-versus-host disease (GVHD) continues to be a major cause of morbidity and mortality after allogeneic hematopoietic cell transplant (HCT) in pediatric patients (ie, children and adolescent and young adults) and limits broader application of the therapy. Pediatric HCT patients have faced major obstacles to access clinical trials that test new agents for GVHD prevention and treatment. According to a recent search, only 6 clinical trials of interventions for prevention or treatment of acute GVHD were conducted specifically in pediatric patients in the United States over the past decade, with 8 internationally. In this review, we summarize the studies that were performed and specifically enrolled and reported on pediatric patients after allogeneic HCT and provide a listing of studies currently under way.
Project description:Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic stem cell transplant (alloHSCT), underscoring the need to further elucidate its mechanisms and develop novel treatments. Based on recent observations that microRNA-155 (miR-155) is up-regulated during T-cell activation, we hypothesized that miR-155 is involved in the modulation of aGVHD. Here we show that miR-155 expression was up-regulated in T cells from mice developing aGVHD after alloHSCT. Mice receiving miR-155-deficient donor lymphocytes had markedly reduced lethal aGVHD, whereas lethal aGVHD developed rapidly in mice recipients of miR-155 overexpressing T cells. Blocking miR-155 expression using a synthetic anti-miR-155 after alloHSCT decreased aGVHD severity and prolonged survival in mice. Finally, miR-155 up-regulation was shown in specimens from patients with pathologic evidence of intestinal aGVHD. Altogether, our data indicate a role for miR-155 in the regulation of GVHD and point to miR-155 as a novel target for therapeutic intervention in this disease.
Project description:To identify kinases in immune cells of patients with SR-GVHD we isolated leukocytes and specifically enriched kinases via kinet-beads-technology. Rho Kinase Type 1 (ROCK1) was identified as the most abundant kinase in SR-GVHD.