Unknown

Dataset Information

0

Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation.


ABSTRACT: Hospital-acquired infections can cause serious complications and are a severe problem because of the increased emergence of antibiotic-resistant bacteria. Biophysical modification of the material surfaces to prevent or reduce bacteria adhesion is an attractive alternative to antibiotic treatment. Since stainless steel is a widely used material for implants and in hospital settings, in this work, we used stainless steel to investigate the effect of the material surface topographies on bacterial adhesion and early biofilm formation. Stainless steel samples with different surface roughnesses Rq in a range of 217.9-56.6 nm (Ra in a range of 172.5-45.2 nm) were fabricated via electropolishing and compared for adhesion of bacterial pathogens Pseudomonas aeruginosa and Staphylococcus aureus. It was found that the number of viable cells on the untreated rough surface was at least 10-fold lower than those on the electropolished surfaces after 4 h of incubation time for P. aeruginosa and 15-fold lower for S. aureus. Fluorescence images and scanning electron microscopy images revealed that the bacterial cells tend to adhere individually as single cells on untreated rough surfaces. In contrast, clusters of the bacterial cells (microcolonies) were observed on electropolished smooth surfaces. Our study demonstrates that nanoscale surface roughness can play an important role in restraining bacterial adhesion and formation of microcolonies.

SUBMITTER: Wu S 

PROVIDER: S-EPMC6045408 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of the Surface Nanoscale Roughness of Stainless Steel on Bacterial Adhesion and Microcolony Formation.

Wu Songmei S   Altenried Stefanie S   Zogg Andi A   Zuber Flavia F   Maniura-Weber Katharina K   Ren Qun Q  

ACS omega 20180615 6


Hospital-acquired infections can cause serious complications and are a severe problem because of the increased emergence of antibiotic-resistant bacteria. Biophysical modification of the material surfaces to prevent or reduce bacteria adhesion is an attractive alternative to antibiotic treatment. Since stainless steel is a widely used material for implants and in hospital settings, in this work, we used stainless steel to investigate the effect of the material surface topographies on bacterial a  ...[more]

Similar Datasets

| S-EPMC5761049 | biostudies-literature
| S-EPMC5541041 | biostudies-literature
| S-EPMC7045555 | biostudies-literature
2010-04-30 | GSE20174 | GEO
| S-EPMC8074267 | biostudies-literature
| S-EPMC6925979 | biostudies-literature
| S-EPMC5428051 | biostudies-literature
| S-EPMC6836003 | biostudies-literature