Unknown

Dataset Information

0

Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2.


ABSTRACT: Structure and thermodynamics of pure cubic ZrO2 and HfO2 were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automated ab initio molecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2 and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2 and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2 and HfO2 are similar and reach (4 ± 1)·10-5/K from experiment and (5 ± 1)·10-5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2 and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2 is an excellent oxygen conductor, perhaps even better than YSZ.

SUBMITTER: Hong QJ 

PROVIDER: S-EPMC6175917 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO<sub>2</sub> and HfO<sub>2</sub>.

Hong Qi-Jun QJ   Ushakov Sergey V SV   Kapush Denys D   Benmore Chris J CJ   Weber Richard J K RJK   van de Walle Axel A   Navrotsky Alexandra A  

Scientific reports 20181008 1


Structure and thermodynamics of pure cubic ZrO<sub>2</sub> and HfO<sub>2</sub> were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automated ab initio molecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic ph  ...[more]

Similar Datasets

| S-EPMC9986956 | biostudies-literature
| S-EPMC5570928 | biostudies-literature
| S-EPMC5256481 | biostudies-literature
| S-EPMC6930307 | biostudies-literature
| S-EPMC9008441 | biostudies-literature
| S-EPMC9088301 | biostudies-literature
| S-EPMC4007386 | biostudies-literature
| S-EPMC8880414 | biostudies-literature
| S-EPMC7493302 | biostudies-literature
| S-EPMC6641027 | biostudies-literature