Unknown

Dataset Information

0

Robust estimation of high-dimensional covariance and precision matrices.


ABSTRACT: High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment assumption, achieve the same minimax convergence rates as do existing methods under a sub-Gaussianity assumption. Consistency of the proposed estimators is also established under the weak assumption of bounded 2 + ε moments for ε ∈ (0, 2). The associated convergence rates depend on ε.

SUBMITTER: Avella-Medina M 

PROVIDER: S-EPMC6188670 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust estimation of high-dimensional covariance and precision matrices.

Avella-Medina Marco M   Battey Heather S HS   Fan Jianqing J   Li Quefeng Q  

Biometrika 20180327 2


High-dimensional data are often most plausibly generated from distributions with complex structure and leptokurtosis in some or all components. Covariance and precision matrices provide a useful summary of such structure, yet the performance of popular matrix estimators typically hinges upon a sub-Gaussianity assumption. This paper presents robust matrix estimators whose performance is guaranteed for a much richer class of distributions. The proposed estimators, under a bounded fourth moment ass  ...[more]

Similar Datasets

| S-EPMC5351783 | biostudies-literature
| S-EPMC7946866 | biostudies-literature
| S-EPMC10730115 | biostudies-literature
| S-EPMC6690172 | biostudies-literature
| S-EPMC4719663 | biostudies-literature
| S-EPMC5655846 | biostudies-literature
| S-EPMC10550010 | biostudies-literature
| S-EPMC3697978 | biostudies-literature
| S-EPMC4629499 | biostudies-literature
| S-EPMC6709985 | biostudies-literature