Unknown

Dataset Information

0

Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1.


ABSTRACT: Background The present study demonstrates that the ubiquitin E3 ligase, Pellino-1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk-1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad-Peli1) gene therapy in Flk-1+/- mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction ( MI ) followed by the immediate intramyocardial injection of adenovirus carrying LacZ (Ad-LacZ) (1×109 pfu) or Ad-Peli1 (1×109 pfu). Heart tissues were collected for analyses. Compared with wild-type ( WTMI ) mice, analysis revealed decreased expressions of Peli1, phosphorylated (p-)Flk-1, p-Akt, p- eNOS , p- MK 2, p-IκBα, and NF -κB and decreased vessel densities in Flk-1+/- mice subjected to MI (Flk-1+/- MI ). Mice ( CD 1) treated with Ad-Peli1 after the induction of MI showed increased β-catenin translocation to the nucleus, connexin 43 expression, and phosphorylation of Akt, eNOS , MK 2, and IκBα, that was followed by increased vessel densities compared with the Ad-LacZ-treated group. Echocardiography conducted 30 days after surgery showed decreased function in the Flk1+/- MI group compared with WTMI , which was restored by Ad-Peli1 gene therapy. In addition, therapy with Ad-Peli1 stimulated angiogenic and arteriogenic responses in both CD 1 and Flk-1+/- mice following MI . Ad-Peli1 treatment attenuated cardiac fibrosis in Flk-1+/- MI mice. Similar positive results were observed in CD 1 mice subjected to MI after Ad-Peli1 therapy. Conclusion Our results show for the first time that Peli1 plays a unique role in salvaging impaired collateral blood vessel formation, diminishes fibrosis, and improves myocardial function, thereby offering clinical potential for therapies in humans to mend a damaged heart following MI .

SUBMITTER: Thirunavukkarasu M 

PROVIDER: S-EPMC6222946 | biostudies-literature | 2018 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1.

Thirunavukkarasu Mahesh M   Selvaraju Vaithinathan V   Joshi Mandip M   Coca-Soliz Vladimir V   Tapias Leonidas L   Saad IbnalWalid I   Fournier Craig C   Husain Aaftab A   Campbell Jacob J   Yee Siu-Pok SP   Sanchez Juan A JA   Palesty J Alexander JA   McFadden David W DW   Maulik Nilanjana N  

Journal of the American Heart Association 20180901 18


Background The present study demonstrates that the ubiquitin E3 ligase, Pellino-1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk-1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad-Peli1) gene therapy in Flk-1<sup>+/-</sup> mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction ( MI ) followed by the immed  ...[more]

Similar Datasets

| S-EPMC2396811 | biostudies-literature
| S-EPMC3865673 | biostudies-literature
| S-EPMC8218775 | biostudies-literature
| S-EPMC9238546 | biostudies-literature
| S-EPMC9350893 | biostudies-literature
| S-EPMC10478015 | biostudies-literature
| S-EPMC9037277 | biostudies-literature
| S-EPMC7417680 | biostudies-literature
| S-EPMC8960131 | biostudies-literature
2019-06-29 | GSE133503 | GEO