Project description:Lung cancer is one of the most incident tumors worldwide, characterized by a very bad prognosis due to its high mortality even in early stages [...].
Project description:Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood. This paper is focuses on imaging for diagnosis, staging, and follow-up of noncraniofacial RMS.
Project description:Cancer immunotherapy and in particular monoclonal antibodies blocking the inhibitory programed cell death 1 pathway (PD-1/PD-L1) have made a significant impact on the treatment of cancer patients in recent years. However, despite the remarkable clinical efficacy of these agents in a number of malignancies, it has become clear that they are not sufficiently active for many patients. Initial evidence, for example with combined inhibition of PD-1 and CTLA-4 in melanoma and non-small cell lung cancer (NSCLC), has highlighted the potential to further enhance the clinical benefits of monotherapies by combining agents with synergistic mechanisms of action. In order to address the current progress and consider challenges associated with these novel approaches, the Society for Immunotherapy of Cancer (SITC) convened a Combination Immunotherapy Task Force. This Task Force was charged with identifying and prioritizing the most promising prospects for combinatorial approaches as well as addressing the challenges associated with developing these strategies. As a result of the extensive clinical benefit and tolerable side effects demonstrated with agents inhibiting the PD-1 pathway, an overview of current evidence to support its promising potential for use as a backbone in combination strategies is presented. In addition, key issues in the development of these strategies including preclinical modeling, patient safety and toxicity considerations, clinical trial design, and endpoints are also discussed. Overall, the goal of this manuscript is to provide a summary of the current status and potential challenges associated with the development and clinical implementation of these strategies.
Project description:PurposeSystemic therapy has improved rhabdomyosarcoma event-free and overall survival; however, approximately 40 % of patients will have progressive or recurrent disease which is difficult to cure and remains a considerable challenge. Minimal progress has been made in improving outcomes for metastatic or relapsed RMS due to a lack of effective therapeutic agents. Targeted therapies are likely to be incorporated into regimens which rely on conventional cytotoxic chemotherapy. A system to evaluate novel combinations of interest is needed.MethodsIn this study, we explored 8 agents, 5 that are routinely used or similar to agents used in the clinical management of RMS and 3 biologically targeted agents with novel mechanisms of action, the Wee1 inhibitor AZD1775, the tyrosine kinase inhibitor cabozantinib, and the proteasome inhibitor bortezomib. All were tested individually at clinically achievable concentrations for activity in 4 RMS cell lines and then for potential synergy in two-drug combinations.ResultsWe found single-agent activity in five of the agents (or their active metabolites) that constitute the standard of care in RMS and for AZD1775 with mean IC50 values of 207 ng/ml, well below clinically achievable levels. In addition, the combination of individual cytotoxic chemotherapeutics currently used for RMS demonstrated largely synergistic activity with higher, but clinically achievable concentrations of AZD1775 in our assays.ConclusionsPrioritization of chemotherapeutics in RMS is possible using an in vitro system that can define novel drug combinations worthy of future investigation. AZD1775 exhibits single-agent activity, as well as synergy with conventional cytotoxic chemotherapy, and is a novel targeted agent that warrants further study in RMS.
Project description:Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing's family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody-based and cell-based therapies into an overall treatment strategy of sarcoma will be discussed.
Project description:BackgroundImmunotherapies targeting cellular immunity are currently approved for treatment of melanoma, renal cell carcinoma, and prostate cancer. Studies on the immunogenicity and immune responsiveness of pediatric tumors are limited, therefore, it remains unclear to what extent T-cell-based immunotherapy holds promise for pediatric solid tumors.ProcedureA new rhabdomyosarcoma cell line (M3-9-M) was derived from an embryonal rhabdomyosarcoma (ERMS) occurring in a C57BL/6 mouse transgenic for hepatocyte growth factor and heterozygous for mutated p53. Primary tumors and metastases derived from M3-9-M were studied for similarities to human ERMS, and for immunogenicity and immune responsiveness.ResultsPrimary and metastatic tumors develop after orthotopic injection of M3-9-M into immunocompetent C57BL/6 mice, which mirror human ERMS with regard to histology, gene expression, and metastatic behavior. Whole cell vaccination using irradiated M3-9-M cells or M3-9-M-pulsed dendritic cells (DC)-induced tumor-specific T-cell responses that prevent tumor growth following low-dose tumor injection, and slow tumor growth following higher doses. Administration of anti-CD25 moAbs to deplete CD4(+)CD25(+)FOXP3(+) regulatory T cells prior to tumor vaccination enhanced the potency of the ERMS tumor vaccine. Adoptive immunotherapy with M3-9-M primed T cells plus DC-based vaccination resulted in complete eradication of day 10 M3-9-M derived tumors.ConclusionsM3-9-M derived murine ERMS is immunogenic and immunoresponsive; regulatory T cells contribute to immune evasion by murine rhabdomyosarcoma. Adoptive immunotherapy with DC vaccination can eradicate low tumor burdens. Future work will seek to identify the tumor-associated antigens that mediate protective and therapeutic immunity in this model.
Project description:Few studies have investigated the seasonal patterns of embryonal tumours. Based on data from the French National Registry of Childhood Cancers, the present study aimed to investigate seasonal variations in embryonal tumour incidence rates by month of birth and by month of diagnosis. The study included 6635 primary embryonal tumour cases diagnosed before the age of 15 years over the period 2000-2015 in mainland France. Assuming monthly variations in incidence rates were homogeneous over 2000-2015, we used a Poisson regression model to test for overall heterogeneity in standardised incidence ratios (SIRs) by month of birth or diagnosis. The seasonal scan statistic method was used to detect monthly excesses or deficits of embryonal tumour cases over the whole study period. The annual reproducibility of the observed monthly variations was formally tested. An overall heterogeneity in incidence rates by month of birth was observed for rhabdomyosarcoma in boys only. Based on the month of diagnosis, a seasonality was evidenced for unilateral retinoblastoma, with a lower incidence rate in the summer (SIRJul-Aug = 0.68, 95% CI = 0.52-0.87), whilst the incidence rate of rhabdomyosarcoma tended to be lower in August (SIRAug = 0.68, 95% CI = 0.52-0.89). No seasonality was detected for the other embryonal tumour groups by month of birth or month of diagnosis. This study is one of the largest to have investigated the seasonality of childhood embryonal tumours. The study showed a seasonal variation in the incidence rates by month of diagnosis for unilateral retinoblastoma and rhabdomyosarcoma. Our findings are likely to reflect a delay in consultation during the summer months. However, the role of seasonally varying environmental exposures cannot be ruled out.
Project description:As research on parasitic helminths has entered the post-genomic era, research efforts have turned to deciphering the function of genes in the public databases of genome sequences. It is hoped that, by understanding the role of parasite genes in maintaining their parasitic lifestyle, critical insights can be gained to develop new intervention and control strategies. Methods to manipulate and transform parasitic worms are now developed to a point where it has become possible to gain a comprehensive understanding of the molecular mechanisms underlying host-parasite interplay, and here, we summarise and discuss the advances that have been made in schistosome transgenesis over the past 25 years. The ability to genetically manipulate schistosomes holds promise in finding new ways to control schistosomiasis, which ultimately may lead to the eradication of this debilitating disease.
Project description:PurposeChildhood RMS is a rare malignant disease in which evaluation of tumour spread at diagnosis is essential for therapeutic management. F-18 FDG-PET imaging is currently used for initial RMS disease staging.Materials and methodsThis multicentre retrospective study in six French university hospitals was designed to analyse the prognostic accuracy of MTV at diagnosis for patients with RMS between 1 January 2007 and 31 October 2017, for overall (OS) and progression-free survival (PFS). MTV was defined as the sum of the primitive tumour and the largest metastasis, where relevant, with a 40% threshold of the primary tumour SUVmax. Additional aims were to define the prognostic value of SUVmax, SUVpeak, and bone lysis at diagnosis.ResultsParticipants were 101 patients with a median age of 7.4 years (IQR [4.0-12.5], 62 boys), with localized disease (35 cases), regional nodal spread (43 cases), or distant metastases (23). 44 patients had alveolar subtypes. In a univariate analysis, a MTV greater than 200 cm3 was associated with OS (HR = 3.47 [1.79;6.74], p<0.001) and PFS (HR = 3.03 [1.51;6.07], p = 0.002). SUVmax, SUVpeak, and bone lysis also influenced OS (respectively p = 0.005, p = 0.004 and p = 0.007) and PFS (p = 0.029, p = 0.019 and p = 0.015). In a multivariate analysis, a MTV greater than 200 cm3 was associated with OS (HR = 2.642 [1.272;5.486], p = 0.009) and PFS (HR = 2.707 [1.322;5.547], p = 0.006) after adjustment for confounding factors, including SUVmax, SUVpeak, and bone lysis.ConclusionA metabolic tumor volume greater than 200 cm3, SUVmax, SUVpeak, and bone lysis in the pre-treatment assessment were unfavourable for outcome.
Project description:The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.